
Model Transformation Languages L1, L2, L3 and Their
Implementation

Edgars Rencis1

University of Latvia, IMCS, 29 Rai�a Blvd, R�ga, Latvia
Edgars.Rencis@lumii.lv

Abstract. In this paper a family of model transformation languages L1, L2,
and L3 following the language L0 is introduced. The first language L0, not
being part of this paper, is very simple and serves as a base language. It is
implemented through an efficient compiler to C++ [1]. Each of the next
languages L1, L2, and L3 is an extension of the previous one, and they are
implemented by the bootstrapping method based on the language L0, that is,
three compilers are written in L0: from L1 to L0, from L2 to L1, and from L3
to L2. The language L1 contains powerful pattern definition facilities, L2 –
loops, and L3 – the branching facility. The language L3 is considered to be
both sufficiently easy-to-use to serve as an intermediate language in the
implementation of higher-level transformation languages, and expressive
enough to be used in real model transformation tasks. The presented paper is
an extended version of sections 4 – 6 of [10].

Keywords. Model transformation languages, L0, Lx, L1, L2, L3, compiler,
bootstrapping.

1 Introduction

Although model transformation languages are the very heart of the MDA [2] – the
most advanced architecture used to build systems nowadays – the implementation of
various model transformation languages encountered in the world has not been very
extensively researched. Actually, there exist only a few attempts to implement a
model transformation language through some other language by using bootstrapping
method [3-5]. The goal of this paper is to demonstrate the use of such an approach. It
includes defining a sequence of model transformation languages and then
implementing these languages by bootstrapping method one through another until the
base transformation language is reached. In addition, another goal is to propose a
language L3 that is, on the one hand, simple enough to be easily implementable, and,
on the other hand, expressive enough to be used in practical model transformation
tasks. Some the of results expounded on in this paper are also briefly outlined in [10].

1 Partially supported by ESF (European Social Fund),

project 2004/0001/VPD1/ESF/PIAA/04/NP/3.2.3.1/0001/0001/0063

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 103.–139. lpp.

LURaksti733-datorzin.indd 103LURaksti733-datorzin.indd 103 2008.03.31. 15:06:062008.03.31. 15:06:06

The structure of this paper is the following:
1) the base transformation language L0 is described in Section 2 – it is very

simple and contains only the basic transformation facilities; an efficient
compiler to C++ is built for this language [1];

2) a sequence of model transformation languages L0’, L1, L2, and L3 is
introduced in Section 3; every next language of the so called Lx family is
made based on the previous one by adding some new features; both the
metamodel and the textual syntax is provided for each of languages; the
language L3 is of a sufficiently high level to be used in practical model
transformation tasks, however, it is still sufficiently easy-to-use to be used as
an intermediate language in the implementation of higher-level model
transformation languages (for example, the graphical transformation language
MOLA [6,7,15]) by using the bootstrapping method;

3) the implementation of languages L0’, L1, L2, and L3 is provided in Section 4;
every next language is compiled to the previous one using the bootstrapping
method.

2 Model transformation language L0

L0 is a textual model transformation language. It offers simple commands to work
with arbitrary fixed instances of a given metamodel (for example, a command for
creating a new instance, deleting an instance, getting and setting attribute’s values,
making and deleting links between instances, searching for instances etc.) and to
handle simple control flows (it is done using the so called “goto” commands, as well
as “else” branches that are attached to some L0 commands). To store persistent data,
an in-memory repository has been developed at the University of Latvia, Institute of
Mathematics and Computer Science [8].

An effective compiler from the language L0 to the language C++ has been
developed. It means that it is possible to translate a program written in L0 into a C++
code, which can further be compiled to a “.dll” file. When it is done, the resulting
“.dll” file can be executed on a metamodel given by the user.

A more detailed description of the language L0 is available in [1], however, an
overview of this language (commands + metamodel) is given in the next sections of
this paper in order to make this paper understandable without the necessity to read the
abovementioned paper.

2.1 Command of the Transformation Language L0

Base model transformation language L0 is a fully procedural language and contains
the following commands (that can be found in the body of any procedure or function)
[9]:

1) call <subProgName> (<actualParamList>) – calls the subprogram with the
given parameters;

2) return – returns the control to the calling program;
3) return <identifier> – returns the value of <identifier> to the calling program;

104 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 104LURaksti733-datorzin.indd 104 2008.03.31. 15:06:072008.03.31. 15:06:07

4) first <pointerName> : <className> [else <labelName>] – positions the
pointer <pointerName> to an arbitrary instance of the class <className>. If
there are no instances of the given class, the control is given to the label
<labelName> ;

5) first <pointerName1> : <className> from <pointerName2> by <roleName>
[else <labelName>] – positions the pointer <pointerName1> to such an
arbitrary instance of the class <className> that is reachable from the pointer
<pointerName2> by the role <roleName>. If there are no such instances, the
control is given to the label <labelName>. After the command has been
executed, the value set of the pointer <pointerName1> is limited to exactly
those instances of the class <className>, which are reachable from the
pointer <pointerName2> by the role <roleName> ;

6) next <pointerName> [else <labelName>] – positions the pointer
<pointerName> to the next instance that satisfies conditions raised by the
respective “first” command (the previous one with the same pointer
<pointerName>) and that is not yet visited by commands “first” or “next”. If
there are no such instances, the control is given to the label <labelName> ;

7) goto <labelName> – gives the control the label <labelName> ;
8) label <labelName> – defines the label <labelName> ;
9) addObj <pointerName> : <className> – creates a new instance of the class

<className> ;
10) addLink <pointerName1> . <roleName> . <pointerName2> – creates a link

between instances <pointerName1> and <pointerName2> with the role name
<roleName> at the end of the instance <pointerName2> ;

11) deleteObj <pointerName> – deletes the instance <pointerName> ;
12) deleteLink <pointerName1> . <roleName> . <pointerName2> – deletes the

link between instances <pointerName1> and <pointerName2> with the role
name <roleName> at the end of the instance <pointerName2> ;

13) setPointer <pointerName1> = <pointerName2> – positions the pointer
<pointerName1> to the instance pointed to by the pointer <pointerName2> ;

14) setPointerF <pointerName> = <funcName> (<actualParamList>) – positions
the pointer <pointerName> to the instance returned by the function
<funcName> called with the given parameters ;

15) setVar <varName> = <binExpr> – sets the value of the variable <varName>
to the value of the binary expression <binExpr> ;

16) setVarF <varName> = <funcName> (<actualParamList>) – sets the value of
the variable <varName> to the value returned by the function <funcName>
called by given parameters ;

17) setAttr <pointerName> . <attrName> = <binExpr> – sets the value of the
attribute <attrName> of the instance <pointerName> to the value of the binary
expression <binExpr> ;

18) type <pointerName> == <className> [else <labelName>] – if the pointer
<pointerName> points to the instance of the class <className>, the control is
given to the next command, otherwise the control is given to the label
<labelName>. Inequality (“!=”) is allowable instead of the equality as well;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 105

LURaksti733-datorzin.indd 105LURaksti733-datorzin.indd 105 2008.03.31. 15:06:072008.03.31. 15:06:07

19) var <varName> == <binExpr> [else <labelName>] – if the value of the
variable <varName> is equal to the value of the binary expression <binExpr>,
the control is given to the next command, otherwise the control is given to the
label <labelName>. Any other comparison operators (“<”, “<=”, “>”, “>=”,or
“!=”) are allowable instead of the equality as well;

20) pointer <pointerName1> == <pointerName2> [else <labelName>] – if
pointers <pointerName1> and <pointerName2> point to the same instance, the
control is given to the next command, otherwise the control is given to the
label <labelName>. Inequality (“!=”) is allowable instead of the equality as
well;

21) attr <pointerName> . <attrName> == <binExpr> [else <labelName>] – if the
value of the attribute <attrName> of the instance <pointerName> is equal to
the value of the binary expression <binExpr>, the control is given to the next
command, otherwise the control is given to the label <labelName>. Any other
comparison operators (“<”, “<=”, “>”, “>=” or “!=”) are allowable instead of
the equality as well;

22) link <pointerName1> . <roleName> . <pointerName2> [else <labelName>] –
if there exists a link with the role name <roleName> at the end of the instance
<pointerName2> between instances <pointerName1> and <pointerName2>,
the control is given to the next command, otherwise the control is given to the
label <labelName> ;

23) nolink <pointerName1> . <roleName> . <pointerName2> [else <labelName>
] – if there does not exist a link with the role name <roleName> at the end of
the instance <pointerName2> between instances <pointerName1> and
<pointerName2>, the control is given to the next command, otherwise the
control is given to the label <labelName> ;

24) DEBUG_ON – turns on the debugging mode;
25) DEBUG_OFF – turns off the debugging mode.

Since the transformation language L0 is a strongly typified language, it is required

that any variable is declared in a separate block in each procedure or function in the
following manner:

1) var <varName> : <typeName> – declares a variable with a primitive data type
(Integer, Real, String or Boolean)

2) pointer <pointerName> : <className> – declares a pointer to instances of the
class <className>

There actually exists an extension of the language L0 – language L0+. In the
language L0+, commands working in metamodel level are added. Namely, it is
possible, for example, to make and delete classes, associations and attributes in L0+.
So it is possible to make a specific metamodel in L0+ and then to execute the program
written in L0 (or L0+) on this metamodel. As it is not the goal of this paper,
commands of the language L0+ have not been discussed here.

106 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 106LURaksti733-datorzin.indd 106 2008.03.31. 15:06:072008.03.31. 15:06:07

2.2 The Metamodel of the Language L0

Since metamodels of the further introduced transformation languages will be based on
the metamodel of the language L0, it is necessary to discuss this metamodel in detail
(see Fig. 1).

The metamodel of the language L0 is quite intuitive – every transformation
program (an instance of the class “Transformation”) contains procedures/functions
that in their turn contain command blocks starting with one command while every
command does not have more than one next command. Every procedure/function has
its variable definition block as well.

In the language L0, four types of commands exist:
1) instances of the class “GotoCom” – control flow commands;
2) instances of the class “FNCom” – instance searching commands (“first” and

“next”);
3) instances of the class “ECom” – commands with a possible “else” branch

(“type”, “var”, “pointer”, “attr”, “link” and “noLink”);
4) instances of the class „SCom” – other commands (“call”, “return”, “label”,

“addObj”, “addLink”, “deleteObj”, “deleteLink”, “setPointer”, “setPointerF”,
“setVar”, “setVarF”, “setAttr”, “DEBUG_ON” and “DEBUG_OFF”).

Transformation
name: String

DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

Directive
val: String
file_name: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Command

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

defBlock0..1

pf
0..1

owner
0..1

param 0..1

prev
0..1

next0..1

tr 0..1

pf*

dir
*tr

0..1

pf
0..1 block

0..1
block 0..1

start
0..1

def*
block 0..1

prev
0..1

next0..1

Fig 1. The metamodel of the language L0

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 107

LURaksti733-datorzin.indd 107LURaksti733-datorzin.indd 107 2008.03.31. 15:06:082008.03.31. 15:06:08

2.3 Model Transformation Example in the Language L0

Let’s assume we have given a metamodel consisting of two classes (Fig. 2). Students
have name, age, and average marks in each of the eight bachelor’s study examination
periods. Instances of the class “Course” are courses of master studies and the attribute
“hasGoodStudents” shows whether the average mark of all bachelor’s examination
periods for all adult students of the particular course is at least 8. The attribute “title”
of the class “Course” is supposed to be unique. It must be mentioned that the given
metamodel is not the best solution for such a fragment of the world, but it is in return
very appropriate for the demonstration of the use of languages Lx.

Student
name: String
age: Integer
mark1: Real
mark2: Real
mark3: Real
mark4: Real
mark5: Real
mark6: Real
mark7: Real
mark8: Real

Course
title: String
hasGoodStudents: Boolean course

* student
1..*

Fig. 2. Metamodel used in the example

The problem to solve is as follows – set the correct value of the attribute

“hasGoodStudents” for the course named “Operating Systems”. The solution written
in the language L0 is given below.
transformation example;
 main procedure main();
 pointer c:Course;
 pointer s:Student;
 var x:Real;
 var avg:Real;
 var count:Integer;
 begin;
 first c:Course else endOfProg;
 label startFinding;
 attr c.title=="Operating Systems" else getNextCourse;
 goto courseFound;
 label getNextCourse;
 next c else endOfProg;
 goto startFinding;
 label courseFound;
 setVar x=0;

108 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 108LURaksti733-datorzin.indd 108 2008.03.31. 15:06:082008.03.31. 15:06:08

 setVar count=0;
 first s:Student from c by student
 else noMoreStudents;
 label startCounting;
 attr s.age>=18 else getNextStudent;
 setVar count=count+1;
 setVar avg=s.mark1;
 setVar avg=avg+s.mark2;
 setVar avg=avg+s.mark3;
 setVar avg=avg+s.mark4;
 setVar avg=avg+s.mark5;
 setVar avg=avg+s.mark6;
 setVar avg=avg+s.mark7;
 setVar avg=avg+s.mark8;
 setVar avg=avg/8;
 setVar x=x+avg;
 label getNextStudent;
 next s else noMoreStudents;
 goto startCounting;
 label noMoreStudents;
 var count>0 else writeGood;
 setVar x=x/count;
 var else writeGood; x<8
 setAttr c.hasGoodStudents=false;
 goto endOfProg;
 label riteGood; w
 setAttr c.hasGoodStudents=true;
 label endOfProg;
 ;
endTransformation;
end

3 Model transformation languages L0’ until L3

Transformation languages Lx (or, the so called Lx language family) contain the
transformation language L0 and its related transformation languages L0’, L1, L2, and
L3. Each of these languages is built based on the previous language of this family by
adding some extra features. The syntax and semantics of languages L0’, L1, L2, and
L3 are described in this section.

3.1 Transformation Language L0’

Model transformation language L0’ (read – „L0 prim”) is based on the language L0.
The new feature of L0’ is the possibility to make long arithmetic expressions (in L0,
only unary and binary expressions were allowed).

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 109

LURaksti733-datorzin.indd 109LURaksti733-datorzin.indd 109 2008.03.31. 15:06:092008.03.31. 15:06:09

Arithmetic expressions of an arbitrary length are allowed in L0’. It means that it is
allowed to use each of the four arithmetic operators and traditional brackets (“(” and
“)”) when building long expressions. Variables, constants, attributes, and functions
can be used as operands in such expressions. The use of operators with respect to the
data types is shown in Table 1.

Table 1. The use of arithmetic operators with respect to data types

Operator Left hand operand Right hand operand Result
Integer Integer Integer
Integer Real Real

Real Integer Real
Real Real Real

+

String String String
Integer Integer Integer
Integer Real Real

Real Integer Real -

Real Real Real
Integer Integer Integer
Integer Real Real

Real Integer Real *

Real Real Real
Integer Integer Real
Integer Real Real

Real Integer Real /

Real Real Real

The traditional operator execution sequence is taken into account (from the highest

to the lowest):
1) function calls;
2) brackets;
3) multiplication and division;
4) addition and subtraction.
The metamodel of L0’ is made by taking the metamodel of L0 and supplementing

it with some new classes and associations. In this metamodel, the class “Expression”
together with some other classes is added. Every expression can be attached either to
some instance of the class “Ecom” (if it is a comparison) or to some instance of the
class “Scom” (if it is an assignment). Every expression contains one starting primitive
(instance of the class “Eelem”), and every expression’s primitive has at most one next
primitive. Primitives can be of various types – variables, attributes, function calls,
constants, operators, and brackets (Fig. 3, bold classes and associations are new in
L0’).

110 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 110LURaksti733-datorzin.indd 110 2008.03.31. 15:06:092008.03.31. 15:06:09

DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

Directive
val: String
file_name: String

Command

Transformation
name: String

Expression

EElem

Attr
name: String
classPointer: String
type: String

Funct
name: String
type: String

Param
name: String
type: String

Const
val: String
type: String

Op
val: String

Brack
val: String

Var
name: String
type: String
isPointer: Boolean

owner
0..1

param 0..1

prev
0..1

next0..1 dir
*tr

0..1

pf
0..1 block

0..1

def*
block 0..1

defBlock
0..1 pf

0..1
block 0..1

start0..1

tr 0..1

pf*

expr0..1

sCom
0..1

expr
0..1 eCom

0..1
expr 0..1

start0..1
prev
0..1

next0..1

funct 0..1
start0..1

prev
0..1

next0..1

prev
0..1

next0..1

Fig. 3. The metamodel of the transformation language L0’

Commands of L0 are the same in L0’. The only difference is in those places where

some binary expression could be in the language L0 – now an expression of an
arbitrary length is allowed in the language L0’. So it needs to be specified how to
write so long expressions. An arithmetic expression can be defined as one of the
following:

1) a constant of the type String (for example, “17”);
2) a positive constant of the type Integer (for example, 17) or Real (for example,

17.0);
3) (-C), where C – a positive constant of the type Integer or Real;
4) a variable of the type Integer, Real or String;
5) an attribute of the type Integer, Real or String that is written in the following

way – <pointerName> . <attributeName> : <typeName>, where
<pointerName> is declared as a pointer to the class whose attribute is to
inspect;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 111

LURaksti733-datorzin.indd 111LURaksti733-datorzin.indd 111 2008.03.31. 15:06:102008.03.31. 15:06:10

6) a function call, where the function is of the type Integer, Real or String;
7) (E), where E – an arithmetic expression;
8) E+F, where E and F – arithmetic expressions with compatible types;
9) E-F, where E and F – arithmetic expressions with compatible types;
10) E*F, where E and F – arithmetic expressions with compatible types;
11) E/F, where E and F – arithmetic expressions with compatible types.
For example, correct commands in the language L0’ are as follows (if based on the

metamodel shown in Fig. 4):
1) setVar x=x+y+2;
2) setVar s=z+”:”+z+”...”+s1;
3) var x==i*(y+(17/2));
4) attr p.age!=i+person1.age:Integer-1;
5) var y==17.5+3*5/(x+y);
It is assumed in those commands that variables and pointer are defined like this:
var x:Real;
var y:Real;
var i:Integer;
var s:String;
var s1:String;
var z:String;
pointer p:Person;
pointer person1:Person;

Person
age: Integer
hasParentUnder18: Boolean

father
0..1

son*

Fig.4. The metamodel used in L0’ examples

The transformation that solves the problem proposed in Section “2.3. Model

transformation example in the language L0” can resemble this in the language L0’:
transformation example;
 main procedure main();
 pointer c:Course;
 pointer s:Student;
 var x:Real;
 var count:Integer;
 begin;
 first c:Course else endOfProg;
 label startFinding;
 attr c.title=="Operating Systems" else getNextCourse;
 goto courseFound;
 label getNextCourse;
 next c else endOfProg;
 goto startFinding;

112 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 112LURaksti733-datorzin.indd 112 2008.03.31. 15:06:112008.03.31. 15:06:11

 label courseFound;
 setVar x=0;
 setVar count=0;
 first s:Student from c by student
 else noMoreStudents;
 label startCounting;
 attr s.age>=18 else getNextStudent;
 setVar count=count+1;
 setVar x = x + (s.mark1:Real + s.mark2:Real +
 s.mark3:Real + s.mark4:Real + s.mark5:Real +
 s.mark6:Real + s.mark7:Real + s.mark8:Real) / 8;
 label getNextStudent;
 next s else noMoreStudents;
 goto startCounting;
 label noMoreStudents;
 var count>0 else writeGood;
 setVar x=x/count;
 var x<8 else writeGood;
 setAttr c.hasGoodStudents=false;
 goto endOfProg;
 label writeGood;
 setAttr c.hasGoodStudents=true;
 label endOfProg;
 end;
endTransformation;

3.2 Transformation Language L1

Transformation language L1 (if compared to L0’) is supplemented with a pattern
matching facility, so that it is possible to search for some instances satisfying a given
pattern. Any L1 pattern can contain conditions put on values of variables or attributes,
links between instances and other. Although pattern matching can be considered to be
one of the most fundamental modeling concept, the only thing that differs L1
metamodel from the metamodel of the language L0’ is one association between
classes “FNCom” and “ComBlock” (Fig. 5, the new association is drawn in bold).

So it is now possible to attach the so called “suchthat” block to every instance
searching command (these are instances of the class „FNCom”). This block can
contain arbitrary L1 commands and thus the pattern can be specified.

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 113

LURaksti733-datorzin.indd 113LURaksti733-datorzin.indd 113 2008.03.31. 15:06:122008.03.31. 15:06:12

DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

Directive
val: String
file_name: String

Command

Transformation
name: String

Expression

EElem

Attr
name: String
classPointer: String
type: String

Funct
name: String
type: String

Const
val: String
type: String

Op
val: String

Brack
val: String

Param
name: String
type: String

Var
name: String
type: String
isPointer: Boolean

owner
0..1

param 0..1

prev
0..1

next0..1
dir
*tr

0..1

pf
0..1 block

0..1

def*
block 0..1

defBlock
0..1 pf

0..1
block 0..1

start0..1

tr 0..1

pf*

expr0..1

sCom
0..1

expr
0..1 eCom

0..1
expr 0..1

start0..1
prev
0..1

next0..1

funct 0..1
start0..1

prev
0..1

next0..1

com
0..1

suchthat
0..1

prev
0..1

next0..1

Fig. 5. The metamodel of the transformation language L1

In textual syntax, the only difference between languages L0’ and L1 is in

commands “first” and “next”. Now it is possible to attach a pattern to them:
first <pointerName1> : <className> from [
 <pointerName2> by <roleName>] [suchthat
begin
 <L1 om
end];

C mands>

next <pointerName> [suchthat
begin
 <L1Commands>
end];
What is the semantics of the “suchthat” block at all? Commands of this block can

always give an answer to the question – does the particular instance satisfy the given
pattern or not? Therefore the pattern matching block can be treated like a novel

114 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 114LURaksti733-datorzin.indd 114 2008.03.31. 15:06:122008.03.31. 15:06:12

expression of the logical type (Boolean) that will further be called the begin-end
expression [10]. In more formal terms – a begin-end expression is any construction
built like this:
begin
 <L1
end

Commands>

Now it is possible to define the semantics of a “suchthat” block (or a begin-end
expression) – a begin-end expression is true if, taking into account particular instance
and executing all the commands of the given block one by another (starting from the
first one), it is possible to successfully reach the end of the block (meaning –
successfully execute its last command).

What does it mean in L1 to successfully execute a command? In order to answer
this question it will be enough to inspect commands of just two types – “goto”
command and commands with a possible “else” branch (“ECom” and “FNCom”
instances in the metamodel). In the case of any other L1 command it is assumed that
these commands are always successfully executable. Let's take a more detailed view
of the two types of commands mentioned above:

1) “goto” commands in the language L0 must be supplemented with exactly one
label name (to which label the control must be given after the execution of this
“goto” command). In L1, “goto” commands – if used in begin-end expressions
– must be supplemented with no more than one label. It means the label
attached to this command can be empty. If that is the case, the value of the
particular begin-end expression becomes equal to false when reaching such a
“goto” command, and no more commands of this block are to be executed. So
the “goto” command is successfully executable if there is exactly one label
name attached to it.

2) “ECom” and “FNCom” commands in L0 can contain no more than one “else”
branch. If some command contains no “else” branch and it is the case when
some comparison of instance searching fails, the control is given to the end of
this particular procedure/function. In L1, a non-existing “else” branch in the
situation the control would have given to the label specified in this “else”
branch leads to the false value of the particular begin-end expression that
contains this command. So a command that is an instance of the class “ECom”
or an instance of the class “FNCom” is successfully executable if it contains
either an “else” branch or the comparison, or instance searching does not fail.

Since the semantics of the instance searching commands (“first” and “next”) might
not be intuitively precisely clear, it is necessary to explain it in detail. In L0, the
semantics of these commands are explained in the following manner:

1) When reaching the “first” command with a pointer <pointerName> to the class
<className> attached, a possible value set is assigned for this pointer, that is
– those instances of the class <className> are distinguished to which it will
be further possible for this particular pointer to point. If there is no “from ... by
...” part in this command, the value set contains all the instances of the class
<className>, otherwise the value set of <pointerName> is limited to exactly
those instances of the class <className> that are reachable from the instance
by the role specified in the “from ... by ...” part. After the value set is
determined, an arbitrary instance from this set is assigned to <pointerName>

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 115

LURaksti733-datorzin.indd 115LURaksti733-datorzin.indd 115 2008.03.31. 15:06:132008.03.31. 15:06:13

and then withdrawn from the set. If the set is found to be empty, the control is
given to the label specified in the “else” branch (if it exists).

2) When reaching the “next” command with a pointer <pointerName> attached
(the same pointer that has been attached to some “first” command before), an
arbitrary instance of the previously made value set of this pointer is assigned
to <pointerName> and then withdrawn from the set. If the set is found empty,
the control is given to the label specified in the “else” branch (if it exists).

3) When reaching the “next” command with a pointer attached that is not yet
processed in any “first” command (so the value set is not determined for it),
program execution semantics is not defined.

In L1, the semantics of instance searching commands is adopted from the language
L0, and some conditions according to the semantics of the pattern matching block are
added:

1) When reaching the “first” command with a pointer <pointerName> attached,
its value set is determined in the same way it was done in the case of the
language L0. After that, an arbitrary instance of this value set that satisfies the
given begin-end expression (if it exists) is assigned to <pointerName> and
then withdrawn from the set. If there are no such instances, the control is given
to the label specified in the “else” branch (if it exists).

2) When reaching the “next” command with a pointer <pointerName> attached
that has previously determined value set (the “first” command on this pointer
is executed before), an arbitrary instance of this value set that satisfies the
given begin-end expression (if it exists) is assigned to <pointerName> and
then withdrawn from the set. If there are no such instances, the control is given
to the label specified in the “else” branch (if it exists).

3) When reaching the “next” command with such a pointer attached that is not
yet processed in any “first” command (so the value set is not determined for
it), program execution semantics is not defined.

Let’s consider some examples now. A simple pattern based on which the first
instance of the class “Person” is found, where the condition holds that the age of the
particular person is 24 (examples used in this section are based on the metamodel
shown in Fig. 4):
first p:Person suchthat
begin
 p.age==24;
end;
In this case, first such p from the class “Person” will be found whom it will be

possible to successfully execute this only command – “p.age==24;”. Since it is a
command of type “ECom” and it does not contain an “else” branch, the only possible
way for this command to be able to execute successfully is the way when the
comparison holds. So the begin-end expression is true in this case if the value of the
attribute “age” of the instance pointed to by p is equal to 24.

To find the next instance of the same class based on the same condition, the “next”
command with a pattern matching block needs to be executed:
next p suchthat
begin
 attr p.age==24;

116 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 116LURaksti733-datorzin.indd 116 2008.03.31. 15:06:132008.03.31. 15:06:13

end
else no_more_persons;
A pattern based on which the first instance of the class “Person” is found whom a

condition holds that it is 24 years old and it is the son of another person pointed to by
the pointer father:
first p:Person suchthat
begin
 attr p.age==24;

end
link father.son.p;

else no_such_persons;
A problem might arise – find the persons that have a 24 year-old son. In this case,

the command in L1 that finds the first such person can look like this:
first parent:Person suchthat
begin
 first p:Person suchthat
 begin
 link parent.son.p;
 attr p.age==24;

end
end;

else no_such_persons;
If this command executes and the control is not given to the “else” label, the

pointer parent will point to such instance of the class “Person” that satisfies the
condition specified above (moreover – the pointer p will point to the instance of the
class “Person” that has the link with the given name to the instance pointer to by
parent). The inner “first” command can be read as “exists”, that is, all the pattern can
be read as “Find the first parent whom there exists such p that is in a relation son with
the pointer parent and that is 24 years old”.

The transformation that solves the problem proposed in Section “2.3. Model
transformation example in the language L0” can resemble this in the language L1:
transformation example;
 main procedure main();
 pointer c:Course;
 pointer s:Student;
 var x:Real;
 var count:Integer;
 begin;
 first c:Course suchthat
 begin
 attr c.title=="Operating Systems";
 end else endOfProg;
 setVar x=0;
 setVar count=0;
 first s:Student from c by student suchthat
 begin
 attr s.age>=18;
 end else noMoreStudents;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 117

LURaksti733-datorzin.indd 117LURaksti733-datorzin.indd 117 2008.03.31. 15:06:132008.03.31. 15:06:13

 label startCounting;
 setVar count=count+1;
 setVar x = x + (s.mark1:Real + s.mark2:Real +
 s.mark3:Real + s.mark4:Real + s.mark5:Real +
 s.mark6:Real + s.mark7:Real + s.mark8:Real) / 8;
 next s suchthat
 begin
 attr s.age>=18;
 end else noMoreStudents;
 goto startCounting;
 label noMoreStudents;
 var count>0 else writeGood;
 setVar x=x/count;
 var x<8 else writeGood;
 setAttr c.hasGoodStudents=false;
 goto endOfProg;
 label riteGood; w
 setAttr c.hasGoodStudents=true;
 label endOfProg;
 end;
endTransformation;

3.3 The Comparison of L1 and a First-Order Logic

How expressive exactly are the pattern definition blocks of the transformation
language L1? What are the types of problems solvable by these constructions? This
section is devoted to these questions.

Pattern definition block (or to be more precise – the begin-end expression attached
to it) gives exactly one answer of the logical data type (true or false) for each object of
the set under consideration. If looking at the pattern block in such a way, one can start
to draw an analogy with formulae of first-order logic that are objects of the logical
type as well. While transformation language L1 is known only by a small set of
people, first-order logic is considered to be a classic and is ranked as one of the basic
disciplines of mathematics. Therefore the comparison of L1 and a first-order logic
would give us a better notion of the scope of L1.

Let’s consider a many-sorted first-order logic [11]. According to the definition, the
alphabet of such a language consists of seven sets of symbols:

1) a countable set S � {bool} of sorts (or types) containing the special sort bool
such that S is non-empty and does not contain bool;

2) logical connectives: � (conjunction), � (disjunction), � (implication) and �
(equivalence) that are all of rank (bool 	 bool � bool),
 (negation) of rank
(bool � bool) and � (a bottom concept) of rank (� � bool);

3) quantifiers: s (universal quantifier) and �s (existential quantifier) for every set
s�S;

4) an equality symbol: =s of rank (s 	 s � bool) for every set s�S;

118 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 118LURaksti733-datorzin.indd 118 2008.03.31. 15:06:142008.03.31. 15:06:14

5) variables: a countably infinite set Vs = {x0, x1, x2, ...} for every set s�S each
variable xi being of rank (� � s);

6) auxiliary symbols: “(” and “)”;
7) an alphabet L of non-logical symbols consisting of:

a. function symbols: a countable set FS = {f0, f1, ...} and a rank function r: FS
� S+ 	 S (S+ contains all the words of S excepting the empty word, that is,
all the strings of length n>0 whose all elements belong to the set S),
assigning a pair r(f) = (u,s) called rank to every function symbol f; the
string u is called the arity of f, and the symbol s�S – the sort (or type) of f;

b. constants: a countable set CSs = {c0, c1, ...} for every set s�S each ci being
of rank (� � s);

c. predicate symbols: a countable set PS = {P0, P1, ...}and a rank function r:
PS � S* 	 {bool} (S* contains all the words of S including the empty
word) assigning a pair r(P) = (u, bool) to each predicate symbol P; the
string u is called the arity of P.

It is assumed that all the sets Vs, FS, CSs and PS is mutually disjoint for every
possible value of s�S.

Taking into account such a definition, terms and atomic formulae in the first-order
logic are defined as follows:

1) every constant and every variable of sort s is a term of sort s;
2) if t1, ..., tn are terms, each ti of sort ui, and f is a function symbol of rank (<u1,

..., un> � s), then f(t1, ..., tn) is a term of sort s;
3) every predicate symbol of arity �, as well as the bottom concept (�) is an

atomic formula;
4) if t1 and t2 are terms of sort s, then =s(t1, t2) is an atomic formula;
5) if t1, ..., tn are terms, each ti of sort ui, and P is a predicate symbol of arity u1,

..., un, then P(t1, ..., tn) is an atomic formula.
Formulae are defined as follows:
1) every atomic formula is a formula;
2) for any two formulae A and B, (A�B), (A�B), (A�B), (A�B) and
A are also

formulae;
3) for any variable x of sort s and any formula A, sx(A) and �sx(A) are also

formulae.
Let’s look now at a subset of full many-sorted first-order logic called the language

P-, that contains only binary predicate symbols and functions with only one argument.
In that case, the alphabet of the language P- can be defined in the following manner:

1) a countable set S � {bool} of sorts (or types) containing the special sort bool
such that S is non-empty and does not contain bool;

2) logical connectives: � (conjunction) and � (disjunction) of rank (bool 	 bool
� bool),
 (negation) of rank (bool � bool) and � (a bottom concept) of rank
(� � bool);

3) quantifiers: s (universal quantifier) and �s (existential quantifier) for every
set s�S;

4) an equality symbol: =s of rank (s 	 s � bool) for every set s�S;
5) variables: a countably infinite set Vs = {x0, x1, x2, ...} for every set s�S each

variable xi being of rank (� � s);

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 119

LURaksti733-datorzin.indd 119LURaksti733-datorzin.indd 119 2008.03.31. 15:06:152008.03.31. 15:06:15

6) auxiliary symbols: “(” and “)”;
7) an alphabet L of non-logical symbols consisting of:

a. function symbols: a countable set FS = {f0, f1, ...} and a rank function r: FS
� S 	 S, assigning a pair r(f) = (s,s) to every function symbol f;

b. constants: a countable set CSs = {c0, c1, ...} for every set s�S each ci being
of rank (� � s);

c. predicate symbols: a countable set PS = {P0, P1, ...}and a rank function r:
PS � S2 	 {bool}, assigning a pair r(P) = (<s,s>, bool) to each predicate
symbol P.

So terms and atomic formulae in P- can be defined as follows:
1) every constant and every variable of sort s is a term of sort s;
2) if t is a term of sort u, and f is a function symbol of rank (u � s), then f(t) is a

term of sort s;
3) � is an atomic formula;
4) if t1 and t2 are terms of sort s, then =s(t1, t2) is an atomic formula;
5) if t1 and t2 are terms, each ti of sort ui, and P is a predicate symbol of arity <u1,

u2>, then P(t1, t2) is an atomic formula.
Formulae in P- are defined as follows:
1) every atomic formula is a formula;
2) for any two formulae A and B, (A�B), (A�B) and
A are also formulae;
3) for any variable x of sort s and any formula A, sx(A) and �sx(A) are also

formulae.
Now it is possible to see some similarities between languages P- and L1. Although

different terms are used to define these two languages, it is possible to establish some
links between them (see Table 2).

Table 2. Linking concepts of languages P- and L1

Concept of P- Concept of L1
The set of sorts S The set C � {Integer, Real, String,

Boolean} where C – the set of all
classes found in the metamodel used

The bottom concept �� Boolean value false
Other logical connectives Will be interpreted in the context
Existential quantifier �s where s�C,
and C – the set of all classes found in
the metamodel used

The command “first”

Universal quantifier s where s�C, and
C – the set of all classes found in the
metamodel used

Will be interpreted by transforming the
expression containing the universal
quantifier into the form of that
containing an existential quantifier

The equality symbol =s where
s�{Integer, Real, String, Boolean}

The command “var”

The equality symbol =s where s�C, and
C – the set of all classes found in the
metamodel used

The command “pointer”

120 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 120LURaksti733-datorzin.indd 120 2008.03.31. 15:06:152008.03.31. 15:06:15

The set of variables Vs where
s�{Integer, Real, String, Boolean}

Variables of primitive data types,
declared by the keyword “var”

The set of variables Vs where s�C, and
C – the set of all classes found in the
metamodel used

Pointers to instances, declared by the
keyword “pointer”

Auxiliary symbols “(” and “)” Will be interpreted in the context
The function symbol with one
argument

The attribute of a class

Constants of types Constants of primitive data types
Binary predicate symbols P(t1, t2)
where t1, t2�C, and C – the set of all
classes found in the metamodel used

The command “link”

Theorem. For each formula of the predicate language P-, there exists a begin-end

expression in the language L1 of the same truth value.
Proof. A constructive proof is provided for this theorem. For the theorem to be

proven it is sufficient to produce a valid begin-end expression for each type of
formulae of P- shown in Table 2. To do this, two auxiliary formulae need to be
introduced:

1) expr: <P- formula> � <L1 begin-end expression> – a function assigning an
L1 begin-end expression to the given P- formula;

2) insert: <L1 begin-end expression> 	 <String> � <L1 begin-end expression> –
a function calculating a new begin-end expression from the existing one by
adding the given label name (second parameter) to missing places of the initial
expression (to “goto” commands without a label and to non-existing “else”
branches of those commands that can contain an “else” branch).

All types of P- formulae and their respective L1 begin-end expressions are shown
in Table 3. (labels “unicalLabel”, “unicalLabelForA”, and “endLabel”, as well as
pointers “unicalPtrName1” and “unicalPtrName2”, and variables “unicalVarName1”
and “unicalVarName2” are considered to be unique in the whole given
procedure/function).

Table 3. Construction of an L1 code from P- formulae

F expr(F)
�� goto;
=s(t1,t2) where s�{Integer,
Real, String, Boolean}

setVar unicalVarName1=t1;
setVar unicalVarName2=t2;
var unicalVarName1==unicalVarName2;

=s(t1,t2) where s�C, and C –
the set of all classes found in
the metamodel used

setPointer unicalPtrName1=t1;
setPointer unicalPtrName2=t2;
pointer unicalPtrName2==unicalPtrName2;

P(t1, t2) setPointer unicalPtrName1=t1;
setPointer unicalPtrName2=t2;
link unicalPtrName1.P.unicalPtrName2;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 121

LURaksti733-datorzin.indd 121LURaksti733-datorzin.indd 121 2008.03.31. 15:06:152008.03.31. 15:06:15

A�B expr(A)
expr(B)

A�B insert(expr(A),”unicalLabel”)
goto endLabel;
label unicalLabel;
expr(B)
label endLabel;

A insert(expr(A),”unicalLabel”)
goto;
label unicalLabel;

�sx(A) first x:S suchthat
begin
 expr(A)
end;

sx(A) �
�sx(
A) first x:S suchthat
begin
 insert(expr(A),”unicalLabelForA”)
 goto;
 label unicalLabelForA;
end else unicalLabel;
goto;
label unicalLabel;

It is worth mentioning that it is easier to use the form of an existential quantifier

and to produce a begin-end expression based on that in the case of a universal
quantifier.

In order to get a clearer understanding of the functions used to construct the L1
code, examples of all the different cases are given in Table 4.

Table 4. Construction of an L1 code from P- formulae – examples

F expr(F)
�� goto;
=Integer(x,17) setVar unicalVarName1=x;

setVar unicalVarName2=17;
var unicalVarName1==unicalVarName2;

=Person(p,q) setPointer unicalPtrName1=p;
setPointer unicalPtrName2=q;
pointer unicalPtrName1== unicalPtrName2;

father(p,q) setPointer unicalPtrName1=p;
setPointer unicalPtrName2=q;
link unicalPtrName1.father.unicalPtrName2;

(father(p,q)��
Integer(age(p),18))

setPointer unicalPtrName1=p;
setPointer unicalPtrName2=q;
link unicalPtrName1.father.unicalPtrName2;
setPointer unicalPtrName3=p;
attr unicalPtrName3.age==18;

122 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 122LURaksti733-datorzin.indd 122 2008.03.31. 15:06:162008.03.31. 15:06:16

((father(p,q) � =
Integer (age(p), 18)) �=
Integer (age(q),18))

setPointer unicalPtrName1=p;
setPointer unicalPtrName2=q;
link unicalPtrName1.father.unicalPtrName2 else
unicalLabel;
setPointer unicalPtrName3=p;
attr unicalPtrName3.age==18 else unicalLabel;
goto endLabel;
label unicalLabel;
setPointer unicalPtrName4=q;
attr unicalPtrName4.age==18;
label endLabel;

=Integer(age(p),18) setPointer unicalPtrName1=p;
attr unicalPtrName1.age==18 else unicalLabel;
goto;
label unicalLabel;

�Personp (=Integer(age(p),18)) first p:Person suchthat
begin
 setPointer unicalPtrName1=p;
 attr unicalPtrName1.age==18;
end;

Personp (=Integer(age(p),18)) �

�Personp
(
=Integer(age(p),18))

first p:Person suchthat
begin
 setPointer unicalPtrName1=p;
 attr unicalPtrName1.age==18 else
unicalLabelForA;
 goto;
 label unicalLabelForA;
end else unicalLabel;
goto;
label unicalLabel;

Although the construction of begin-end expressions is inductive in most cases, it is

easy to see that it is indeed possible to construct a begin-end expression with the same
truth value as that of the given P- formula in each case. End of proof.

Actually, begin-end expressions are even more powerful than the predicate
language mentioned above. This is so mainly because of three reasons [10]:

1) it is possible to operate with variables of primitive types in begin-end
expressions;

2) a begin-end expression specifies the command execution order during the
pattern matching (i.e., the order in which instances are traversed);

3) when a pattern is matched, all its elements are assigned an identity which can
be used further for referencing these elements.

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 123

LURaksti733-datorzin.indd 123LURaksti733-datorzin.indd 123 2008.03.31. 15:06:162008.03.31. 15:06:16

3.4 Transformation Language L2

The new feature of the language L2 if compared to the language L1 is the possibility
to make loops. A special command exists in L2 with which it is possible to visit either
all instances of the specified class or just those instances of the class that match the
given pattern.

In the metamodel of L2, one class is added (“ForeachCom”) if compared to the
metamodel of L1 (Fig. 6, bold class and associations are new in L2). Two
associations from this class to the class “ComBlock” exist – one for the commands of
the loop and the other for the pattern definition block of the loop.

DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

Directive
val: String
file_name: String

Command

Transformation
name: String

Expression

EElem

Attr
name: String
classPointer: String
type: String

Funct
name: String
type: String

Const
val: String
type: String

Op
val: String

Brack
val: String

Param
name: String
type: String

ForeachCom
name: String
text: String

Var
name: String
type: String
isPointer: Boolean

owner
0..1

param 0..1

prev
0..1

next0..1
dir
*tr

0..1

pf
0..1 block

0..1

def*
block 0..1

defBlock
0..1 pf

0..1
block 0..1

start0..1

tr 0..1

pf*

expr0..1

sCom
0..1

expr
0..1 eCom

0..1
expr 0..1

start0..1
prev
0..1

next0..1

funct 0..1
start0..1

prev
0..1

next0..1

stCom
0..1

suchthat
0..1

feCom
0..1

foreach
0..1

prev
0..1

next0..1

stCom_For
0..1

suchthat
0..1

Fig. 6. The metamodel of the transformation language L2

124 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 124LURaksti733-datorzin.indd 124 2008.03.31. 15:06:172008.03.31. 15:06:17

The textual syntax for a loop command is as follows:
foreach <pointerName1> : <className> [from
 <pointerName2> by <roleName>] [suchthat
begin
 <L2Commands>
end]
do
begin
 <
end;

L2Commands>

The semantics of the “suchthat” block is the same as in the case of the language
L1. Since this block is optional, the semantics of the “foreach” command is as follows
– every instance of the specified class that matches the given pattern (if such exists;
otherwise it is considered that every instance is to be taken) is traversed and all the
commands of the “do” block are executed for it.

Let’s consider some examples. Increase the value of the attribute “age” of all
instances of the class “Person” by 1 (all examples in this section are based on the
metamodel seen in Fig. 4):
foreach p:Person do
begin

end;
setAttr p.age=p.age+1;

Increase the age of all persons younger than 18 by 1:
foreach p:Person suchthat
begin
 attr p.age<18;
end
do
begin

end;
setAttr p.age=p.age+1;

Nested loop example – set the value of the attribute “hasParentUnder18” to true for
those persons that are sons of a person younger than 18:
foreach parent:Person suchthat
begin
 attr parent.age<18;
end
do
begin
 foreach p:Person suchthat
 begin
 link parent.son.p;
 end
 do
 begin
 setAttr p.hasParentUnder18=true;

end;
end;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 125

LURaksti733-datorzin.indd 125LURaksti733-datorzin.indd 125 2008.03.31. 15:06:172008.03.31. 15:06:17

The transformation that solves the problem proposed in Section “2.3. Model
transformation example in the language L0” can resemble this in the language L2:
transformation example;
 main procedure main();
 pointer c:Course;
 pointer s:Student;
 var x:Real;
 var count:Integer;
 begin;
 first c:Course suchthat
 begin
 attr c.title=="Operating Systems";
 end else endOfProg;
 setVar x=0;
 setVar count=0;
 foreach s:Student from c by student suchthat
 begin
 attr s.age>=18;
 end
 do
 begin
 setVar count=count+1;
 setVar x = x + (s.mark1:Real + s.mark2:Real +
 s.mark3:Real + s.mark4:Real + s.mark5:Real +
 s.mark6:Real + s.mark7:Real + s.mark8:Real) / 8;
 end;
 var count>0 else writeGood;
 setVar x=x/count;
 var x<8 else writeGood;
 setAttr c.hasGoodStudents=false;
 goto endOfProg;
 label writeGood;
 setAttr c.hasGoodStudents=true;
 label endOfProg;
 end;
endTransformation;

3.5 Transformation Language L3

The new feature of the language L3 if compared to the language L2 is the branching
command – a standard “if-then-else” construction than can be used instead of
constructions made using “goto” commands in some cases.

A new class is added in the metamodel of L3 if compared to the metamodel of L2
– “IfCom” (Fig. 7, bold class and associations are new in L0’). Three associations
from this command to the class “ComBlock” exist – one for the “if” clause, one for
the “then” clause, and one for the “else” clause of the command.

126 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 126LURaksti733-datorzin.indd 126 2008.03.31. 15:06:182008.03.31. 15:06:18

Fig. 7. The metamodel of the transformation language L3

The situation with “then” and “else” blocks is intuitively quite clear – these blocks

must contain commands to be executed in the case of respectively true and false value
of some condition. But what about the “if” block? This is again the case of begin-end
expressions – an expression is attached to the “if” clause of an “IfCom” command,
and so the condition of the “IfCom” command is true if the respective begin-end
expression is true.

The textual syntax of the branching command is as follows:

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation

DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

Directive
val: String
file_name: String

Command

Transformation
name: String

Expression

EElem

Attr
name: String
classPointer: String
type: String

Funct
name: String
type: String

Const
val: String
type: String

Op
val: String

Brack
val: String

Param
name: String
type: String

ForeachCom
name: String
text: String

IfCom

Var
name: String
type: String
isPointer: Boolean

owner
0..1

param 0..1

prev
0..1

next0..1 dir *
tr0..1

pf
0..1 block 0..1

def*
block 0..1

defBlock
0..1 pf

0..1 block 0..1

start0..1

tr 0..1
pf*

expr0..1

sCom
0..1

expr
0..1 eCom

0..1
expr 0..1

start0..1
prev
0..1

next0..1

funct 0..1 start
0..1

prev
0..1

next0..1

stCom
0..1

suchthat
0..1

feCom
0..1

foreach
0..1

iCom
0..1

if
0..1

tCom
0..1

then
0..1

eCom
0..1

else
0..1

prev
0..1

next0..1

stCom_For
0..1

suchthat
0..1

127

LURaksti733-datorzin.indd 127LURaksti733-datorzin.indd 127 2008.03.31. 15:06:182008.03.31. 15:06:18

if
begin

<L3Commands>
end
then
begin

<L3Commands>
end
[else
begin

<L3Commands>
end];
Since the “else” part is optional, it is possible that no commands are to be executed

in the case of false value of the condition.
Let’s consider some examples. Let’s assume we have a pointer p pointing to some

instance of the class “Person”. Increase the value of the attribute 'age” of this instance
by 1 if it is less than 18 (all examples in this section are based on the metamodel
shown in Fig. 4):
if
begin
 attr p.age<18;
end
then
begin
 setAttr p.age=p.age+1;
end;
Increase the age of the person pointed to by p by 1 if it is less than 18, otherwise

decrease it by 1:
if
begin

end
attr p.age<18;

then
begin
 setAttr p.age=p.age+1;
end
else
begin
 setAttr p.age=p.age-1;
end;
A more complicated example – assign a value “Less than hundred” or “Hundred or

more” to a String variable s based on the fact whether the total age of all persons
younger than 18 is less than 100 or not:
if
begin
 setVar sum=0;
 foreach p:Person suchthat
 begin

128 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 128LURaksti733-datorzin.indd 128 2008.03.31. 15:06:202008.03.31. 15:06:20

 attr p.age<18;
 end
 do
 begin
 setVar sum=sum+p.age;
 end;
 var sum<100;
end
then
begin
 setVar s=”Less than hundred”;
end
else
begin
 setVar s=”Hundred or more”;
end;
In this example, the value of the variable sum could also be calculated before the

branching command, however, it can easily be done in the same command when the
semantics of the variable tells it is only needed in the “IfCom” command.

The transformation that solves the problem proposed in Section “2.3. Model
transformation example in the language L0” can resemble this in the language L3:
transformation example;
 main procedure main();
 pointer c:Course;
 pointer s:Student;
 var x:Real;
 var count:Integer;
 begin;
 first c:Course suchthat
 begin
 attr c.title=="Operating Systems";
 end else endOfProg;
 setVar x=0;
 setVar count=0;
 foreach s:Student from c by student suchthat
 begin
 attr s.age>=18;
 end
 do
 begin
 setVar count=count+1;
 setVar x = x + (s.mark1:Real + s.mark2:Real +
 s.mark3:Real + s.mark4:Real + s.mark5:Real +
 s.mark6:Real + s.mark7:Real + s.mark8:Real) / 8;
 end;
 if
 begin
 var count>0;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 129

LURaksti733-datorzin.indd 129LURaksti733-datorzin.indd 129 2008.03.31. 15:06:212008.03.31. 15:06:21

 setVar x=x/count;
 var x<8;
 end
 then
 begin
 setAttr c.hasGoodStudents=false;
 end
 else
 begin
 setAttr c.hasGoodStudents=true;
 end;
 label endOfProg;
 end;
endTransformation;
A full syntax definition of the transformation language L3 based on Backus-Naur

notation [12] is given in Appendix A.

4 The implementation of model transformation languages L0’, L1,
L2, and L3

4.1 The Main Principles of the Implementation of L0’ Until L3

As mentioned in the first sections of this paper, there already exists an effective
implementation of the language L0, that is, a compiler to the language C++. Since
languages L0’, L1, L2, and L3 have been built based on the language L0, a very
logical step would be the implementation of these languages through the language L0.
So actually the basic idea of the implementation of languages L0’ until L3, is to build
a compiler for each of the languages L0’, L1, L2, and L3 to L0. However, for the task
to be accomplished more easily, each compiler will be built to the language that is a
direct ancestor to it instead of building each compiler to the language L0. Since every
next language in the Lx family was built based on the previous one by just adding
some new features, such an implementation is possible. The algorithm used to
implement these compilers is called the bootstrapping algorithm [13]. The
bootstrapping principle is to build a compiler of one language to the other language
that is written in the target language. So, translating this into the language of Lx – to
write a compiler in L0 that transforms an L0’ program into an L0 program, then to
write a compiler in L0’ that transforms an L1 program into an L0’ program, then to
write a compiler in L1 that transforms an L2 program into an L1 program, and finally
to write a compiler in L2 that transforms an L3 program into an L2 program. When
turning to the details of the actual implementation, it is worth mentioning that each
compiler can actually be written in L0 (because L0 is a subset of every other Lx
language). In doing so, the idea of bootstrapping algorithm is not violated – it can still
be considered that each compiler is written in the target language perhaps just without
using all features the language offers.

In contrast with the ideas of the traditional compiler building [14] in which an
analysis of textual forms of programs is taken for a base, the idea of the bootstrapping

130 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 130LURaksti733-datorzin.indd 130 2008.03.31. 15:06:212008.03.31. 15:06:21

algorithm is very convenient in the case of model transformation languages – any
program in a model transformation language is considered as a particular model in the
metamodel of that particular language. If both metamodels of the source and target
languages are known, as well as the particular source model corresponding to the
program to be compiled is known, the compilation task transforms into a standard
model transformation task.

When consideringthe possibility to implement the bootstrapping algorithm, it must
be verified whether it is really possible for each program of the source language to
make an equivalent program in the target language (this could not be possible due to
new features of the target language). Therefore it must be verified for the case of
languages Lx immediately.

The main question about the compiler from L0’ to L0 is whether it is possible for
every arithmetic expression of L0’ to build an equivalent construction in L0. It is easy
to see that every such expression can be divided into some binary or unary
expressions that are allowed in L0 (by assigning intermediate results to temporary
variables). Consequently it is really possible to build a compiler from L0’ to L0.

In L1, a pattern matching is possible. The question that arises – is each L1 pattern
block translatable into L0’? The answer is – yes. Every pattern block can be simulated
with L0’ commands (see Table 5). The general idea is to make some extra labels and
to add a label to commands without any labels to intercept those control flows that
correspond to the situation in L1 the pattern matching fails.

Table 5. The principle of the implementation of a pattern definition block

L1 L0’
first <ptrName1>:<className>
[from <ptrName2> by <roleName>]
suchthat
begin
 <command_1>;
 <command_2>;
 ...
 <command_n>;
end
[else <labelName>];

first <ptrName1>:<className> [from
<ptrName2> by <roleName>] [else
<labelName>];
label ___L_i;
<command_1> [else ___L_i+1];
<command_2> [else ___L_i+1];
...
<command_n> [else ___L_i+1];
goto ___L_i+2;
label ___L_i+1;
next <ptrName1> [else <labelName>];
goto ___L_i;
label ___L_i+2;

next <ptrName> suchthat
begin
 <command_1>;
 <command_2>;
 ...
 <command_n>;
end
[else <labelName>];

next <ptrName> [else <labelName>];
label ___L_i;
<command_1> [else ___L_i+1];
<command_2> [else ___L_i+1];
...
<command_n> [else ___L_i+1];
goto ___L_i+2;
label ___L_i+1;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 131

LURaksti733-datorzin.indd 131LURaksti733-datorzin.indd 131 2008.03.31. 15:06:222008.03.31. 15:06:22

next <ptrName> [else <labelName>];
goto ___L_i;
label ___L_i+2;

Of course, “else” branches are attached to only those commands which can (but do

not) have an “else” branch. A label in the form “___L_i” is considered to be a new
label that cannot be found in any L0’ program written by the user. If a command of
the pattern definition block proves to be an instance searching command with a
“suchthat” block, it needs to be expanded to L0’ commands recursively.

The question about the language L2 – is every “foreach” loop writable in L1?
Again, the answer is implicitly clear – it is! Since there are commands “goto” and
“label” in L1, as well as “else” branches, the control flow can be moved around to
one’s liking, inter alia, making a loop over either all instances of some particular
class, or just those instances that match the specified pattern (pattern matching
constructions are present in L1, so they do not need to be transformed in any way).
The scheme of the implementation of loops is shown in Table 6.

Table 6. The principle of the implementation of a “foreach” loop

L2 L1
foreach <ptrName> : <className>
[suchthat
begin
 <command_1>;
 <command_2>;
 ...
 <command_n>;
end]
do
begin
 <do_command_1>;
 <do_command_2>;
 ...
 <do_command_k>;
end;

first <ptrName> : <className>
[suchthat
begin
<command_1>;
<command_2>;
...
<command_n>;
end]
else __L_i;
label __L_i+1;
<do_command_1>;
<do_command_2>;
...
<do_command_k>;
next <ptrName> [suchthat
begin
<command_1>;
<command_2>;
...
<command_n>;
end]
else __L_i;
goto __L_i+1;
label __L_i;

Again, labels in form “__L_i” are not supposed to be found in any L1 program

written by the user.

132 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 132LURaksti733-datorzin.indd 132 2008.03.31. 15:06:222008.03.31. 15:06:22

The question about the language L3 – is every branching construction writable in
L2? The answer is even more obvious in this case than in the previous ones – every
branching construction can be simulated using “goto” and “label” commands in a
standard way (Table 7). As shown above, “else” branches are added here to intercept
the cases when the “if” condition (begin-end expression) fails.

Table 7. The principle of the implementation of a branching command

L3 L2
if
begin
 <if_command_1>;
 <if_command_2>;
 ...
 <if_command_n>;
end
then
begin
 <then_command_1>;
 <then_command_2>;
 ...
 <then_command_k>;
end
[else
begin
 <else_command_1>;
 <else_command_2>;
 ...
 <else_command_l>;
end];

<if_command_1> [else _L_i];
<if_command_2> [else _L_i];
...
<if_command_n> [else _L_i];
<then_command_1>;
<then_command_2>;
...
<then_command_k>;
goto _L_i+1;
label _L_i;
[<else_command_1>;
<else_command_2>;
...
<else_command_l>;]
label _L_i+1;

Again, labels in form “_L_i” are not supposed to be found in any L2 program

written by user.

4.2 Main Problems of the Implementation of L0’ Until L3

When compiling a program from one language to another, new “label” commands
may appear that must be unique in the scope of the whole particular
procedure/function. Therefore, some limitations of naming conventions must exist. In
the case of languages L0’ until L3 these limitations are as follows – the user cannot
make labels in L1 starting with three underscores (“_”), in L2 – starting with two
underscores, and in L3 – starting with at least one underscore. If so, compilers of L1,
L2, and L3 can make new labels starting with some underscores (so many that the
user is allowed to make such a label in the target language, but is not allowed in the
source language) and following by the symbol “L” and an integer uniquely generated
for every new label. In the case of the L0’ compiler, no labels are made, so no action
needs to be performed.

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 133

LURaksti733-datorzin.indd 133LURaksti733-datorzin.indd 133 2008.03.31. 15:06:222008.03.31. 15:06:22

In the case of L0’ compilation, some new variables may appear that must be
unique in the scope of the whole particular procedure/function. Therefore, some
limitations of naming conventions must exist. The limitation offered is similar to the
case of labels – to forbid declaring variables starting with an underscore in languages
L0’, L1, L2, and L3. So the compiler of L0’ will make variables starting with an
underscore and followed by a string “var” and an integer.

When compiling an L2 program to an L1 program, two instance searching
commands (“first” and “next”) arise from each loop command. If the loop command
contains a pattern definition block, both instance searching commands will contain
this block as well. In terms of models, this means that there is one command block
assigned to two “FNCom” commands. When passing to the next step – the
compilation of L1 – a problem arises – a compiler processes the first of two instance
searching commands mentioned above and then deletes the pattern definition block
from the metamodel (in order to make the model respective to L0’ program). So the
information about the fact that the other command had this block as well is lost.
Hence to solve this problem, it is forbidden to have one command block attached to
more than one command. Therefore, in the compilation of L2, a copy of the command
block must be made. It means that a copy of each command of the particular block
must be made. There is no problem in regard to other commands, but a problem arises
when “label” commands come in place – how to preserve the uniqueness of labels?
The solution here is to make a new unique label from the old unique label by simply
concatenating the label name with itself. For example, if the old label name was
“__L17”, the new one is “__L17__L17”; if the old one was “myLabel”, the new one
is “myLabelmyLabel”. The same conventions relate to “goto” commands and “else”
branches as well.

4.3 The Whole Compilation Process – From L3 Up To L0

Before turning to the compilation process, one more concept needs to be explained,
and that concept is the lexem of the transformation language L3. The metamodel of
lexems – basic syntactical elements of a program – is very simple (Fig. 8). Lexems
are one of the intermediate steps in the full compilation process from L3 up to L0.

Le
val: String
sort: String

prev
0..1

next0..1

Fig. 8. The metamodel of lexems

The full compilation process transforming one text file to another consists of the

following components:
1) initialization tasks – the deletion of any old models of metamodels of L3 and

lexems, and the generation of the new model of lexems from the input text file
specified by the user;

134 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 134LURaksti733-datorzin.indd 134 2008.03.31. 15:06:222008.03.31. 15:06:22

2) transformation of the model of lexems into an L3 model;
3) transformation of the L3 model into an L2 model;
4) transformation of the L2 model into an L1 model;
5) transformation of the L1 model into an L0’ model;
6) transformation of the L0’ model into an L0 model;
7) printing of the L0 model to an output text file specified by the name of the

transformation.
Owing to the fact that pre- and post-conditions of each component are precisely

clear, it is possible to easily use just a subset of all components instead of using the
full compiler as well. It can be useful, for example, in cases when L3 is used as an
intermediate language in the compilation of some higher-level language as it is done
in the compilation of the graphical model transformation language MOLA [15] –
there is no need to perform neither initialization tasks nor the “lexems to L3”
transformation because the L3 model has got into the metamodel of L3 in some other
way.

The full L3 to L0 compiler is available in the Lx homepage [16].

5 Conclusions and future work

It has been evidenced that the bootstrapping method justifies itself in the use of
compiler building if operating with model transformation languages. With this
method, it is possible to build higher and higher-level model transformation languages
that are easy to compile to some lower-level language. The sequence of such
languages – the Lx language family – has been stopped at the language L3 which is of
sufficiently high level to be used in practical model transformation tasks. As a proof
of this, a transformation-based graphical tool-building platform GrTP is being
developed using the language L3 as its base language [17]. The other use case of the
language L3 is the implementation of even higher-level languages. The graphical
model transformation language MOLA [6,7] has been implemented by bootstrapping
method, using the language L3 as an intermediate language in this process [15].

The further work relating to the Lx language family includes, but is not limited to
supplementing languages L0’, L1, L2, and L3 with the features of the language L0+ –
the extended version of L0 [1].

References

1. S. Rikacovs, The base transformation language L0+ and its implementation,

Scientific Papers, University of Latvia, “Computer Science and Information
Technologies”, 2008.

2. MDA Guide Version 1.0.1. OMG, document omg/03-06-01, 2003.
3. E.D.Willink, UMLX - A Graphical Transformation Language for MDA, 2nd

OOPSLA Workshop on Generative Techniques in the context of Model Driven
Architecture , OOPSLA'2003, Anaheim, 2003.

4. T. Clark, A. Evans, P. Sammut, J. Willans. Language Driven Development and
MDA, BPTrends, MDA Journal, Oct 2004.

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 135

LURaksti733-datorzin.indd 135LURaksti733-datorzin.indd 135 2008.03.31. 15:06:232008.03.31. 15:06:23

5. J. Bezivin, E. Breton, G. Dupe, P. Valduriez. The ATL Transformation-based
Model Management Framework, Research Report No 03.08, 2003, IRIN,
Universite de Nantes.

6. A. Kalnins, J. Barzdins, E. Celms, Model Transformation Language MOLA.
Proceedings of MDAFA 2004, Vol. 3599, Springer LNCS, 2005, pp. 62-76.

7. MOLA project, http://mola.mii.lu.lv
8. J. Barzdins, G. Barzdins, R. Balodis, K. Cerans, A. Kalnins, M. Opmanis, K.

Podnieks, Towards Semantic Latvia. Communications of the 7th International
Baltic Conference on Databases and Information Systems (Baltic DB&IS’2006),
Vilnius, 2006, pp. 203-218.

9. The Base Transformation Language L0,
http://lx.mii.lu.lv/L0_plus_CurrVers_2_4.pdf

10. J. Barzdins, A. Kalnins, E. Rencis, S. Rikacovs, Model Transformation
Languages and their Implementation by Bootstrapping Method. Pillars of
Computer Science, Vol. 4800, Springer LNCS, 2008, pp. 130-145.

11. J. Gallier, Logic for Computer Science: Foundations of Automatic Theorem
Proving, Wiley, 1986.

12. L.M. Garshol, BNF and EBNF: What are they and how do they work?,
http://www.garshol.priv.no/download/text/bnf.html

13. B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap, Chapman &
Hall/CRC, 1994, p. 436.

14. A.V. Aho, R. Sethi, J.D. Ullman, Compilers - Principles, Techniques, and Tools,
Addison-Wesley Publishing Company, 1986, p. 796.

15. A. Sostaks, A. Kalnins, The implementation of MOLA to L3 compiler, Scientific
Papers, University of Latvia, “Computer Science and Information Technologies”,
2008.

16. The Lx transformation language set home page, http://Lx.mii.lu.lv
17. J. Barzdins, A. Zarins, K. Cerans, A. Kalnins, E. Rencis, L. Lace, R. Liepins, A.

Sprogis, GrTP: Transformation Based Graphical Tool Building Platform,
MODELS 2007, Workshop on Model Driven Engineering Languages and Systems,
2007.

Appendix

A. L3 syntax definition based on Backus-Naur notation

<L3Program> ::= <transformation> [<L3Program>]
<transformation> ::= transformation <identifier> ;
<transfPartList> endTransformation;
<identifier> ::= <letter> [<string>]
<specialID> ::= <specialLetter> [<string>]
<string> ::= <letter> [<string>] | <digit> [
<string>]
<letter> ::= <specialLetter> | _
<specialLetter> ::= a | b | c | d | e | f | g | h | i |
j | k | l | m | n | o | p | q | r | s | t | u | v | w | x

136 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 136LURaksti733-datorzin.indd 136 2008.03.31. 15:06:232008.03.31. 15:06:23

| y | z | A | B | C | D | E | F | G | H | I | J | K | L |
M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
9
<transfPartList> ::= <transfPart> [<transfPartList>]
<transfPart> ::= <nativeProc> | <nativeFunct> |
<directive> | <debug> | <varDeclaration> | <procedure> |
<function>
<nativeProc> ::= native procedure <identifier> ([
<paramList>]);
<paramList> ::= <parameter> [, <paramList>]
<simpleParamList> ::= <identifier> [, <simpleParamList>
]
<parameter> ::= <identifier> : <primTypeOrMMElem>
<nativeFunct> ::= native function <identifier> ([
<paramList>]): <primTypeOrMMElem> ;
<directive> ::= <dirType> ” <fileName> ”;
<dirType> ::= useMM | include | useLib | useUnit
<fileName> ::= [<specialLetter> :\] [
<folderList>] <string> [. <string>]
<folderList> ::= <string> \ [<folderList>]
<debug> ::= DEBUG_ON; | DEBUG_OFF;
<varDeclaration> ::= imitiveVarDec > | <pointerDecl<pr l >
<primitiveVarDecl>::= var <specialID> : <primTypeName> ;
<primTypeName> ::= Integer | Real | String | Boolean
<pointerDecl> ::= pointer <identifier> :
<metaModelElement> ;
<metaModelElement>::= <letter> [<stringPlus>]
<stringPlus> ::= <stringPlusElem> [<stringPlus>]
<stringPlusElem> ::= <letter> | <digit> | # | ::
<procedure> ::= [main] procedure <identifier> ([
<paramList>]); [<varList>] begin; [<L3CommandList>]
end;
<function> ::= function <identifier> ([
<paramList>]): <primTypeOrMMElem> ; [<varList>]
begin; [<L3CommandList>] end;
<primTypeOrMMElem>::= <primTypeName> | <metaModelElement>
<varList> ::= <varDeclaration> [<varList>]
<L3CommandList> ::= <L3Command> [<L3CommandList>]
<L3Command> ::= <call> | <return> | <first> |
<next> | <goto> | <label> | <addObj> | <addLink> |
<deleteObj> | <deleteLink> | <setPointer> | <setPointerF>
| <setVar> | <setVarF> | <setAttr> | <type> | <var> |
<pointer> | <attr> | <link> | <noLink> | <debug> |
<foreach> | <if>
<call> ::= call <identifier> ([
<simpleParamList>]);
<return> ::= return [<identifier>] ;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 137

LURaksti733-datorzin.indd 137LURaksti733-datorzin.indd 137 2008.03.31. 15:06:242008.03.31. 15:06:24

<first> ::= first <identifier> :
<metaModelElement> [from <identifier> by
<metaModelElement>] [suchthat begin [<L3CommandList>]
end] [else <specialID>] ;
<next> ::= next <identifier> [suchthat begin
[<L3CommandList>] end] [else <specialID>] ;
<goto> ::= goto [<specialID>] ;
<label> ::= label <specialID> ;
<addObj> ::= addObj <identifier> :
<metaModelElement> ;
<addLink> ::= addLink <identifier> .
<metaModelElement> . <identifier> ;
<deleteObj> ::= deleteObj <identifier> ;
<deleteLink> ::= deleteLink <identifier> .
<metaModelElement> . <identifier> ;
<setPointer> ::= setPointer <identifier> =
<identifier> ;
<setPointerF> ::= setPointerF <identifier> =
<identifier> ([<simpleParamList>]);
<setVar> ::= setVar <specialID> = <expression> ;
<setVarF> ::= setVarF <specialID> = <identifier>
([<simpleParamList>]);
<setAttr> ::= setAttr <identifier> .
<metaModelElement> = <expression> ;
<type> ::= <identifier> <pointerRelOp>
<metaModelElement> [else <specialID>] ;
<var> ::= <identifier> <relationOperator>
<expression> [else <specialID>] ;
<pointer> ::= <identifier> <pointerRelOp>
<identifier> [else <specialID>];
<attr> ::= attr <identifier> .
<metaModelElement> <relationalOperator> <expression> [
else <specialID>];
<link> ::= link <identifier> .
<metaModelElement> . <identifier> [else <specialID>] ;
<noLink> ::= noLink <identifier> .
<metaModelElement> . <identifier> [else <specialID>] ;
<foreach> ::= foreach <identifier> :
<metaModelElement> [from <identifier> by
<metaModelElement>] [suchthat begin [<L3CommandList>]
end] do begin [<L3CommandList>] end;
<if> ::= if begin [<L3CommandList>] end
then begin [<L3CommandList>] end [else begin [
<L3CommandList>] end] ;
<expression> ::= <boolExpr> | <notBoolExpr>
<boolExpr> ::= true | false
<notBoolExpr> ::= <exprPart> [<arithmeticOper>
<notBoolExpr>]

138 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 138LURaksti733-datorzin.indd 138 2008.03.31. 15:06:242008.03.31. 15:06:24

<exprPart> ::= <const> | <identifier> |
<attribute> | <functionCall>
<arithmeticOper> ::= + | - | * | /
<const> ::= <integerConst> | <realConst> |
<stringConst>
<integerConst> ::= <positiveNum> | (– <positiveNum>)
<positiveNum> ::= <digit> [<positiveNum>]
<realConst> ::= <positiveNum> . <positiveNum> | (–
<positiveNum> . <positiveNum>)
<stringConst> ::= ” <extendedString> ”
<extendedString> ::= <symbol> [<extendedString>]
<symbol> ::= <letter> | <digit> |
<relationOperator> | ~ | ` | ! | @ | # | $ | % | ^ | & |
(|) | { | } | : | < | > | ? | [|] | ; | ‘ | \ | , | .
| <space>
<attribute> ::= <identifier> . <metaModelElement> :
<primTypeName>
<functionCall> ::= <identifier> ([<simpleParamList>
])
<relationOperator>::= <pointerRelOp> | < | > | <= | >=
<pointerRelOp> ::= == | !=
<space> ::=

Note – the non-terminal symbol <space> is considered to be a space symbol (32th
symbol in the ASCII code table).

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 139

LURaksti733-datorzin.indd 139LURaksti733-datorzin.indd 139 2008.03.31. 15:06:242008.03.31. 15:06:24

