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Abstract.  In this paper a family of model transformation languages L1, L2, 
and L3 following the language L0 is introduced. The first language L0, not 
being part of this paper, is very simple and serves as a base language. It is 
implemented through an efficient compiler to C++ [1]. Each of the next 
languages L1, L2, and L3 is an extension of the previous one, and they are 
implemented by the bootstrapping method based on the language L0, that is, 
three compilers are written in L0: from L1 to L0, from L2 to L1, and from L3 
to L2. The language L1 contains powerful pattern definition facilities, L2 – 
loops, and L3 – the branching facility. The language L3 is considered to be 
both sufficiently easy-to-use to serve as an intermediate language in the 
implementation of higher-level transformation languages, and expressive 
enough to be used in real model transformation tasks. The presented paper is 
an extended version of sections 4 – 6 of [10]. 
 

Keywords. Model transformation languages, L0, Lx, L1, L2, L3, compiler, 
bootstrapping. 

 
1   Introduction 
 
Although model transformation languages are the very heart of the MDA [2] – the 
most advanced architecture used to build systems nowadays – the implementation of 
various model transformation languages encountered in the world has not been very 
extensively researched. Actually, there exist only a few attempts to implement a 
model transformation language through some other language by using bootstrapping 
method [3-5]. The goal of this paper is to demonstrate the use of such an approach. It 
includes defining a sequence of model transformation languages and then 
implementing these languages by bootstrapping method one through another until the 
base transformation language is reached. In addition, another goal is to propose a 
language L3 that is, on the one hand, simple enough to be easily implementable, and, 
on the other hand, expressive enough to be used in practical model transformation 
tasks. Some the of results expounded on in this paper are also briefly outlined in [10]. 
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The structure of this paper is the following: 
1) the base transformation language L0 is described in Section 2 – it is very 

simple and contains only the basic transformation facilities; an efficient 
compiler to C++ is built for this language [1]; 

2) a sequence of model transformation languages L0’, L1, L2, and L3 is 
introduced in Section 3; every next language of the so called Lx family is 
made based on the previous one by adding some new features; both the 
metamodel and the textual syntax is provided for each of languages; the 
language L3 is of a sufficiently high level to be used in practical model 
transformation tasks, however, it is still sufficiently easy-to-use to be used as 
an intermediate language in the implementation of higher-level model 
transformation languages (for example, the graphical transformation language 
MOLA [6,7,15]) by using the bootstrapping method; 

3) the implementation of languages L0’, L1, L2, and L3 is provided in Section 4; 
every next language is compiled to the previous one using the bootstrapping 
method. 

 
2   Model transformation language L0 

 
L0 is a textual model transformation language. It offers simple commands to work 
with arbitrary fixed instances of a given metamodel (for example, a command for 
creating a new instance, deleting an instance, getting and setting attribute’s values, 
making and deleting links between instances, searching for instances etc.) and to 
handle simple control flows (it is done using the so called “goto” commands, as well 
as “else” branches that are attached to some L0 commands). To store persistent data, 
an in-memory repository has been developed at the University of Latvia, Institute of 
Mathematics and Computer Science [8]. 

An effective compiler from the language L0 to the language C++ has been 
developed. It means that it is possible to translate a program written in L0 into a C++ 
code, which can further be compiled to a “.dll” file. When it is done, the resulting 
“.dll” file can be executed on a metamodel given by the user. 

A more detailed description of the language L0 is available in [1], however, an 
overview of this language (commands + metamodel) is given in the next sections of 
this paper in order to make this paper understandable without the necessity to read the 
abovementioned paper. 
 
2.1   Command of the Transformation Language L0 
 
Base model transformation language L0 is a fully procedural language and contains 
the following commands (that can be found in the body of any procedure or function) 
[9]: 

1) call <subProgName> (<actualParamList>) – calls the subprogram with the 
given parameters; 

2) return – returns the control to the calling program; 
3) return <identifier> – returns the value of <identifier> to the calling program; 
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4) first <pointerName> : <className> [ else <labelName> ] – positions the 
pointer <pointerName> to an arbitrary instance of the class <className>. If 
there are no instances of the given class, the control is given to the label 
<labelName> ; 

5) first <pointerName1> : <className> from <pointerName2> by <roleName> 
[ else <labelName> ] – positions the pointer <pointerName1> to such an 
arbitrary instance of the class <className> that is reachable from the pointer 
<pointerName2> by the role <roleName>. If there are no such instances, the 
control is given to the label <labelName>. After the command has been 
executed, the value set of the pointer <pointerName1> is limited to exactly 
those instances of the class <className>, which are reachable from the 
pointer <pointerName2> by the role <roleName> ; 

6) next <pointerName> [ else <labelName> ] – positions the pointer 
<pointerName> to the next instance that satisfies conditions raised by the 
respective “first” command (the previous one with the same pointer 
<pointerName>) and that is not yet visited by commands “first” or “next”. If 
there are no such instances, the control is given to the label <labelName> ; 

7) goto <labelName> – gives the control the label <labelName> ; 
8) label <labelName> – defines the label <labelName> ; 
9) addObj <pointerName> : <className> – creates a new instance of the class 

<className> ; 
10) addLink <pointerName1> . <roleName> . <pointerName2> – creates a link 

between instances <pointerName1> and <pointerName2> with the role name 
<roleName> at the end of the instance <pointerName2> ; 

11) deleteObj <pointerName> – deletes the instance <pointerName> ; 
12) deleteLink <pointerName1> . <roleName> . <pointerName2> – deletes the 

link between instances <pointerName1> and <pointerName2> with the role 
name <roleName> at the end of the instance <pointerName2> ; 

13) setPointer <pointerName1> = <pointerName2> – positions the pointer 
<pointerName1> to the instance pointed to by the pointer <pointerName2> ; 

14) setPointerF <pointerName> = <funcName> (<actualParamList>) – positions  
the pointer <pointerName> to the instance returned by the function 
<funcName> called with the given parameters ; 

15) setVar <varName> = <binExpr> – sets the value of the variable <varName> 
to the value of the binary expression <binExpr> ; 

16) setVarF <varName> = <funcName> (<actualParamList>) – sets the value of 
the variable <varName> to the value returned by the function <funcName> 
called by given parameters ; 

17) setAttr <pointerName> . <attrName> = <binExpr> – sets the value of the 
attribute <attrName> of the instance <pointerName> to the value of the binary 
expression <binExpr> ; 

18) type <pointerName> == <className> [ else <labelName> ] – if the pointer 
<pointerName> points to the instance of the class <className>, the control is 
given to the next command, otherwise the control is given to the label 
<labelName>. Inequality (“!=”) is allowable instead of the equality as well; 

 
 

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 105

LURaksti733-datorzin.indd   105LURaksti733-datorzin.indd   105 2008.03.31.   15:06:072008.03.31.   15:06:07



19) var <varName> == <binExpr> [ else <labelName> ] – if the value of the 
variable <varName> is equal to the value of the binary expression <binExpr>, 
the control is given to the next command, otherwise the control is given to the 
label <labelName>. Any other comparison operators (“<”, “<=”, “>”, “>=”,or  
“!=”) are allowable instead of the equality as well; 

20) pointer <pointerName1> == <pointerName2> [ else <labelName> ] – if 
pointers <pointerName1> and <pointerName2> point to the same instance, the 
control is given to the next command, otherwise the control is given to the 
label <labelName>. Inequality (“!=”) is allowable instead of the equality as 
well; 

21) attr <pointerName> . <attrName> == <binExpr> [ else <labelName> ] – if the 
value of the attribute <attrName> of the instance <pointerName> is equal to 
the value of the binary expression <binExpr>, the control is given to the next 
command, otherwise the control is given to the label <labelName>. Any other 
comparison operators (“<”, “<=”, “>”, “>=” or “!=”) are allowable instead of 
the equality as well; 

22) link <pointerName1> . <roleName> . <pointerName2> [ else <labelName> ] – 
if there exists a link with the role name <roleName> at the end of the instance 
<pointerName2> between instances <pointerName1> and <pointerName2>, 
the control is given to the next command, otherwise the control is given to the 
label <labelName> ; 

23) nolink <pointerName1> . <roleName> . <pointerName2> [ else <labelName> 
] – if there does not exist a link with the role name <roleName> at the end of 
the instance <pointerName2> between instances <pointerName1> and 
<pointerName2>, the control is given to the next command, otherwise the 
control is given to the label <labelName> ; 

24) DEBUG_ON – turns on the debugging mode; 
25) DEBUG_OFF – turns off the debugging mode. 

 
Since the transformation language L0 is a strongly typified language, it is required 

that any variable is declared in a separate block in each procedure or function in the 
following manner: 

1) var <varName> : <typeName> – declares a variable with a primitive data type 
(Integer, Real, String or Boolean) 

2) pointer <pointerName> : <className> – declares a pointer to instances of the 
class <className> 

There actually exists an extension of the language L0 – language L0+. In the 
language L0+, commands working in metamodel level are added. Namely, it is 
possible, for example, to make and delete classes, associations and attributes in L0+. 
So it is possible to make a specific metamodel in L0+ and then to execute the program 
written in L0 (or L0+) on this metamodel. As it is not the goal of this paper, 
commands of the language L0+ have not been discussed here. 
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2.2   The Metamodel of the Language L0 
 

Since metamodels of the further introduced transformation languages will be based on 
the metamodel of the language L0, it is necessary to discuss this metamodel in detail 
(see Fig. 1). 

The metamodel of the language L0 is quite intuitive – every transformation 
program (an instance of the class “Transformation”) contains procedures/functions 
that in their turn contain command blocks starting with one command while every 
command does not have more than one next command. Every procedure/function has 
its variable definition block as well. 

In the language L0, four types of commands exist: 
1) instances of the class “GotoCom” – control flow commands; 
2) instances of the class “FNCom” – instance searching commands (“first” and 

“next”); 
3) instances of the class “ECom” – commands with a possible “else” branch 

(“type”, “var”, “pointer”, “attr”, “link” and “noLink”); 
4) instances of the class „SCom” – other commands (“call”, “return”, “label”, 

“addObj”, “addLink”, “deleteObj”, “deleteLink”, “setPointer”, “setPointerF”, 
“setVar”, “setVarF”, “setAttr”, “DEBUG_ON” and “DEBUG_OFF”). 

 

Transformation
name: String

DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

Directive
val: String
file_name: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Command

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

defBlock0..1

pf
0..1

owner
0..1

param 0..1

prev
0..1

next0..1

tr 0..1

pf*

dir
*tr

0..1

pf
0..1 block

0..1
block 0..1

start
0..1

def*
block 0..1

prev
0..1

next0..1

Fig 1. The metamodel of the language L0 
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2.3   Model Transformation Example in the Language L0 
 
Let’s assume we have given a metamodel consisting of two classes (Fig. 2). Students 
have name, age, and average marks in each of the eight bachelor’s study examination 
periods. Instances of the class “Course” are courses of master studies and the attribute 
“hasGoodStudents” shows whether the average mark of all bachelor’s examination 
periods for all adult students of the particular course is at least 8. The attribute “title” 
of the class “Course” is supposed to be unique. It must be mentioned that the given 
metamodel is not the best solution for such a fragment of the world, but it is in return 
very appropriate for the demonstration of the use of languages Lx. 
 

Student
name: String
age: Integer
mark1: Real
mark2: Real
mark3: Real
mark4: Real
mark5: Real
mark6: Real
mark7: Real
mark8: Real

Course
title: String
hasGoodStudents: Boolean course

* student
1..*

 
Fig. 2. Metamodel used in the example 

 
The problem to solve is as follows – set the correct value of the attribute 

“hasGoodStudents” for the course named “Operating Systems”. The solution written 
in the language L0 is given below. 
transformation example; 
 main procedure main(); 
  pointer c:Course; 
  pointer s:Student; 
  var x:Real; 
  var avg:Real; 
 var count:Integer;   
 begin; 
  first c:Course else endOfProg; 
  label startFinding; 
  attr c.title=="Operating Systems" else getNextCourse; 
  goto courseFound; 
  label getNextCourse; 
  next c else endOfProg; 
  goto startFinding; 
  label courseFound;  
  setVar x=0; 
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  setVar count=0; 
  first s:Student from c by student  
    else noMoreStudents; 
  label startCounting; 
  attr s.age>=18 else getNextStudent; 
  setVar count=count+1; 
  setVar avg=s.mark1; 
  setVar avg=avg+s.mark2; 
  setVar avg=avg+s.mark3; 
  setVar avg=avg+s.mark4; 
  setVar avg=avg+s.mark5; 
  setVar avg=avg+s.mark6; 
  setVar avg=avg+s.mark7; 
  setVar avg=avg+s.mark8; 
  setVar avg=avg/8; 
  setVar x=x+avg; 
  label getNextStudent; 
  next s else noMoreStudents; 
  goto startCounting; 
  label noMoreStudents; 
  var count>0 else writeGood; 
  setVar x=x/count; 
  var  else writeGood;  x<8
  setAttr c.hasGoodStudents=false; 
  goto endOfProg; 
  label riteGood;  w
  setAttr c.hasGoodStudents=true; 
  label endOfProg; 
 ; 
endTransformation; 
end

 
 
3   Model transformation languages L0’ until L3 
 
Transformation languages Lx (or, the so called Lx language family) contain the 
transformation language L0 and its related transformation languages L0’, L1, L2, and 
L3. Each of these languages is built based on the previous language of this family by 
adding some extra features. The syntax and semantics of languages L0’, L1, L2, and 
L3 are described in this section. 

 
3.1   Transformation Language L0’ 

 
Model transformation language L0’ (read – „L0 prim”) is based on the language L0. 
The new feature of L0’ is the possibility to make long arithmetic expressions (in L0, 
only unary and binary expressions were allowed). 
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Arithmetic expressions of an arbitrary length are allowed in L0’. It means that it is 
allowed to use each of the four arithmetic operators and traditional brackets (“(” and 
“)”) when building long expressions. Variables, constants, attributes, and functions 
can be used as operands in such expressions. The use of operators with respect to the 
data types is shown in Table 1. 

 
 

Table 1. The use of arithmetic operators with respect to data types 

Operator Left hand operand Right hand operand Result 
Integer Integer Integer 
Integer Real Real 

Real Integer Real 
Real Real Real 

+ 

String String String 
Integer Integer Integer 
Integer Real Real 

Real Integer Real - 

Real Real Real 
Integer Integer Integer 
Integer Real Real 

Real Integer Real * 

Real Real Real 
Integer Integer Real 
Integer Real Real 

Real Integer Real / 

Real Real Real 
 
The traditional operator execution sequence is taken into account (from the highest 

to the lowest): 
1) function calls; 
2) brackets; 
3) multiplication and division; 
4) addition and subtraction. 
The metamodel of L0’ is made by taking the metamodel of L0 and supplementing 

it with some new classes and associations. In this metamodel, the class “Expression” 
together with some other classes is added. Every expression can be attached either to 
some instance of the class “Ecom” (if it is a comparison) or to some instance of the 
class “Scom” (if it is an assignment). Every expression contains one starting primitive 
(instance of the class “Eelem”), and every expression’s primitive has at most one next 
primitive. Primitives can be of various types – variables, attributes, function calls, 
constants, operators, and brackets (Fig. 3, bold classes and associations are new in 
L0’). 
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DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

Directive
val: String
file_name: String

Command

Transformation
name: String

Expression

EElem

Attr
name: String
classPointer: String
type: String

Funct
name: String
type: String

Param
name: String
type: String

Const
val: String
type: String

Op
val: String

Brack
val: String

Var
name: String
type: String
isPointer: Boolean

owner
0..1

param 0..1

prev
0..1

next0..1 dir
*tr

0..1

pf
0..1 block

0..1

def*
block 0..1

defBlock
0..1 pf

0..1
block 0..1

start0..1

tr 0..1

pf*

expr0..1

sCom
0..1

expr
0..1 eCom

0..1
expr 0..1

start0..1
prev
0..1

next0..1

funct 0..1
start0..1

prev
0..1

next0..1

prev
0..1

next0..1

Fig. 3. The metamodel of the transformation language L0’ 
 
Commands of L0 are the same in L0’. The only difference is in those places where 

some binary expression could be in the language L0 – now an expression of an 
arbitrary length is allowed in the language L0’. So it needs to be specified how to 
write so long expressions. An arithmetic expression can be defined as one of the 
following: 

1) a constant of the type String (for example, “17”); 
2) a positive constant of the type Integer (for example, 17) or Real (for example, 

17.0); 
3)  (-C), where C – a positive constant of the type Integer or Real; 
4) a variable of the type Integer, Real or String; 
5) an attribute of the type Integer, Real or String that is written in the following 

way – <pointerName> . <attributeName> : <typeName>, where 
<pointerName> is declared as a pointer to the class whose attribute is to 
inspect; 
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6) a function call, where the function is of the type Integer, Real or String; 
7) (E), where E – an arithmetic expression; 
8) E+F, where E and F – arithmetic expressions with compatible types; 
9) E-F, where E and F – arithmetic expressions with compatible types; 
10) E*F, where E and F – arithmetic expressions with compatible types; 
11) E/F, where E and F – arithmetic expressions with compatible types. 
For example, correct commands in the language L0’ are as follows (if based on the 

metamodel shown in Fig. 4): 
1) setVar x=x+y+2; 
2) setVar s=z+”:”+z+”...”+s1; 
3) var x==i*(y+(17/2)); 
4) attr p.age!=i+person1.age:Integer-1; 
5) var y==17.5+3*5/(x+y); 
It is assumed in those commands that variables and pointer are defined like this: 
var x:Real; 
var y:Real; 
var i:Integer; 
var s:String; 
var s1:String; 
var z:String; 
pointer p:Person; 
pointer person1:Person; 
 

Person
age: Integer
hasParentUnder18: Boolean

father
0..1

son*

 
Fig.4. The metamodel used in L0’ examples 

 
The transformation that solves the problem proposed in Section “2.3. Model 

transformation example in the language L0” can resemble this in the language L0’: 
transformation example; 
 main procedure main(); 
  pointer c:Course; 
  pointer s:Student; 
  var x:Real; 
  var count:Integer; 
 begin; 
  first c:Course else endOfProg; 
  label startFinding; 
  attr c.title=="Operating Systems" else getNextCourse; 
  goto courseFound; 
  label getNextCourse; 
  next c else endOfProg; 
  goto startFinding; 
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  label courseFound; 
  setVar x=0; 
  setVar count=0; 
  first s:Student from c by student 
    else noMoreStudents; 
  label startCounting; 
  attr s.age>=18 else getNextStudent; 
  setVar count=count+1; 
  setVar x = x + ( s.mark1:Real + s.mark2:Real +  
    s.mark3:Real + s.mark4:Real + s.mark5:Real +        
    s.mark6:Real + s.mark7:Real + s.mark8:Real ) / 8; 
  label getNextStudent; 
  next s else noMoreStudents; 
  goto startCounting; 
  label noMoreStudents; 
  var count>0 else writeGood; 
  setVar x=x/count; 
  var x<8 else writeGood; 
  setAttr c.hasGoodStudents=false; 
  goto endOfProg; 
  label writeGood; 
  setAttr c.hasGoodStudents=true; 
 label endOfProg;  
 end; 
endTransformation; 
 

3.2   Transformation Language L1 
 
Transformation language L1 (if compared to L0’) is supplemented with a pattern 
matching facility, so that it is possible to search for some instances satisfying a given 
pattern. Any L1 pattern can contain conditions put on values of variables or attributes, 
links between instances and other. Although pattern matching can be considered to be 
one of the most fundamental modeling concept, the only thing that differs L1 
metamodel from the metamodel of the language L0’ is one association between 
classes “FNCom” and “ComBlock” (Fig. 5, the new association is drawn in bold). 

So it is now possible to attach the so called “suchthat” block to every instance 
searching command (these are instances of the class „FNCom”). This block can 
contain arbitrary L1 commands and thus the pattern can be specified. 
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DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

Directive
val: String
file_name: String

Command

Transformation
name: String

Expression

EElem

Attr
name: String
classPointer: String
type: String

Funct
name: String
type: String

Const
val: String
type: String

Op
val: String

Brack
val: String

Param
name: String
type: String

Var
name: String
type: String
isPointer: Boolean

owner
0..1

param 0..1

prev
0..1

next0..1
dir
*tr

0..1

pf
0..1 block

0..1

def*
block 0..1

defBlock
0..1 pf

0..1
block 0..1

start0..1

tr 0..1

pf*

expr0..1

sCom
0..1

expr
0..1 eCom

0..1
expr 0..1

start0..1
prev
0..1

next0..1

funct 0..1
start0..1

prev
0..1

next0..1

com
0..1

suchthat
0..1

prev
0..1

next0..1

 
Fig. 5. The metamodel of the transformation language L1 

 
In textual syntax, the only difference between languages L0’ and L1 is in 

commands “first” and “next”. Now it is possible to attach a pattern to them: 
first <pointerName1> : <className> from [   
 <pointerName2> by <roleName> ] [ suchthat 
begin 
 <L1 om
end ]; 

C mands> 

next <pointerName> [ suchthat 
begin 
 <L1Commands> 
end ]; 
What is the semantics of the “suchthat” block at all? Commands of this block can 

always give an answer to the question – does the particular instance satisfy the given 
pattern or not? Therefore the pattern matching block can be treated like a novel 
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expression of the logical type (Boolean) that will further be called the begin-end 
expression [10]. In more formal terms – a begin-end expression is any construction 
built like this: 
begin 
 <L1
end 

Commands> 

Now it is possible to define the semantics of a “suchthat” block (or a begin-end 
expression) – a begin-end expression is true if, taking into account particular instance 
and executing all the commands of the given block one by another (starting from the 
first one), it is possible to successfully reach the end of the block (meaning – 
successfully execute its last command). 

What does it mean in L1 to successfully execute a command? In order to answer 
this question it will be enough to inspect commands of just two types – “goto” 
command and commands with a possible “else” branch (“ECom” and “FNCom” 
instances in the metamodel). In the case of any other L1 command it is assumed that 
these commands are always successfully executable. Let's take a more detailed view 
of the two types of commands mentioned above: 

1) “goto” commands in the language L0 must be supplemented with exactly one 
label name (to which label the control must be given after the execution of this 
“goto” command). In L1, “goto” commands – if used in begin-end expressions 
– must be supplemented with no more than one label. It means the label 
attached to this command can be empty. If that is the case, the value of the 
particular begin-end expression becomes equal to false when reaching such a 
“goto” command, and no more commands of this block are to be executed. So 
the “goto” command is successfully executable if there is exactly one label 
name attached to it. 

2) “ECom” and “FNCom” commands in L0 can contain no more than one “else” 
branch. If some command contains no “else” branch and it is the case when 
some comparison of instance searching fails, the control is given to the end of 
this particular procedure/function. In L1, a non-existing “else” branch in the 
situation the control would have given to the label specified in this “else” 
branch leads to the false value of the particular begin-end expression that 
contains this command. So a command that is an instance of the class “ECom” 
or an instance of the class “FNCom” is successfully executable if it contains 
either an “else” branch or the comparison, or instance searching does not fail. 

Since the semantics of the instance searching commands (“first” and “next”) might 
not be intuitively precisely clear, it is necessary to explain it in detail. In L0, the 
semantics of these commands are explained in the following manner: 

1) When reaching the “first” command with a pointer <pointerName> to the class 
<className> attached, a possible value set is assigned for this pointer, that is 
– those instances of the class <className> are distinguished to which it will 
be further possible for this particular pointer to point. If there is no “from ... by 
...” part in this command, the value set contains all the instances of the class 
<className>, otherwise the value set of <pointerName> is limited to exactly 
those instances of the class <className> that are reachable from the instance 
by the role specified in the “from ... by ...” part. After the value set is 
determined, an arbitrary instance from this set is assigned to <pointerName> 
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and then withdrawn from the set. If the set is found to be empty, the control is 
given to the label specified in the “else” branch (if it exists). 

2) When reaching the “next” command with a pointer <pointerName> attached 
(the same pointer that has been attached to some “first” command before), an 
arbitrary instance of the previously made value set of this pointer is assigned 
to <pointerName> and then withdrawn from the set. If the set is found empty, 
the control is given to the label specified in the “else” branch (if it exists). 

3) When reaching the “next” command with a pointer attached that is not yet 
processed in any “first” command (so the value set is not determined for it), 
program execution semantics is not defined. 

In L1, the semantics of instance searching commands is adopted from the language 
L0, and some conditions according to the semantics of the pattern matching block are 
added: 

1) When reaching the “first” command with a pointer <pointerName> attached, 
its value set is determined in the same way it was done in the case of the 
language L0. After that, an arbitrary instance of this value set that satisfies the 
given begin-end expression (if it exists) is assigned to <pointerName> and 
then withdrawn from the set. If there are no such instances, the control is given 
to the label specified in the “else” branch (if it exists). 

2) When reaching the “next” command with a pointer <pointerName> attached 
that has previously determined value set (the “first” command on this pointer 
is executed before), an arbitrary instance of this value set that satisfies the 
given begin-end expression (if it exists) is assigned to <pointerName> and 
then withdrawn from the set. If there are no such instances, the control is given 
to the label specified in the “else” branch (if it exists). 

3) When reaching the “next” command with such a pointer attached that is not 
yet processed in any “first” command (so the value set is not determined for 
it), program execution semantics is not defined. 

Let’s consider some examples now. A simple pattern based on which the first 
instance of the class “Person” is found, where the condition holds that the age of the 
particular person is 24 (examples used in this section are based on the metamodel 
shown in Fig. 4): 
first p:Person suchthat 
begin 
 p.age==24; 
end; 
In this case, first such p from the class “Person” will be found whom it will be 

possible to successfully execute this only command – “p.age==24;”. Since it is a 
command of type “ECom” and it does not contain an “else” branch, the only possible 
way for this command to be able to execute successfully is the way when the 
comparison holds. So the begin-end expression is true in this case if the value of the 
attribute “age” of the instance pointed to by p is equal to 24. 

To find the next instance of the same class based on the same condition, the “next” 
command with a pattern matching block needs to be executed: 
next p suchthat 
begin 
 attr p.age==24; 
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end 
else no_more_persons; 
A pattern based on which the first instance of the class “Person” is found whom a 

condition holds that it is 24 years old and it is the son of another person pointed to by 
the pointer father: 
first p:Person suchthat  
begin 
 attr p.age==24; 
 
end 
link father.son.p; 

else no_such_persons; 
A problem might arise – find the persons that have a 24 year-old son. In this case, 

the command in L1 that finds the first such person can look like this: 
first parent:Person suchthat  
begin 
 first p:Person suchthat 
 begin 
  link parent.son.p; 
  attr p.age==24; 
 
end 
end; 

else no_such_persons; 
If this command executes and the control is not given to the “else” label, the 

pointer parent will point to such instance of the class “Person” that satisfies the 
condition specified above (moreover – the pointer p will point to the instance of the 
class “Person” that has the link with the given name to the instance pointer to by 
parent). The inner “first” command can be read as “exists”, that is, all the pattern can 
be read as “Find the first parent whom there exists such p that is in a relation son with 
the pointer parent and that is 24 years old”. 

The transformation that solves the problem proposed in Section “2.3. Model 
transformation example in the language L0” can resemble this in the language L1: 
transformation example; 
 main procedure main(); 
  pointer c:Course; 
  pointer s:Student; 
  var x:Real; 
 var count:Integer;   
 begin; 
  first c:Course suchthat 
  begin 
   attr c.title=="Operating Systems"; 
  end else endOfProg; 
  setVar x=0; 
  setVar count=0; 
  first s:Student from c by student suchthat 
  begin 
   attr s.age>=18; 
  end else noMoreStudents; 
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  label startCounting; 
  setVar count=count+1; 
  setVar x = x + ( s.mark1:Real + s.mark2:Real +  
     s.mark3:Real + s.mark4:Real + s.mark5:Real +  
     s.mark6:Real + s.mark7:Real + s.mark8:Real ) / 8; 
  next s suchthat 
  begin 
   attr s.age>=18; 
  end else noMoreStudents; 
  goto startCounting; 
  label noMoreStudents; 
  var count>0 else writeGood; 
  setVar x=x/count; 
  var x<8 else writeGood; 
  setAttr c.hasGoodStudents=false; 
  goto endOfProg; 
  label riteGood;  w
  setAttr c.hasGoodStudents=true; 
  label endOfProg; 
 end; 
endTransformation; 

 
3.3   The Comparison of L1 and a First-Order Logic 

 
How expressive exactly are the pattern definition blocks of the transformation 
language L1? What are the types of problems solvable by these constructions? This 
section is devoted to these questions. 

Pattern definition block (or to be more precise – the begin-end expression attached 
to it) gives exactly one answer of the logical data type (true or false) for each object of 
the set under consideration. If looking at the pattern block in such a way, one can start 
to draw an analogy with formulae of first-order logic that are objects of the logical 
type as well. While transformation language L1 is known only by a small set of 
people, first-order logic is considered to be a classic and is ranked as one of the basic 
disciplines of mathematics. Therefore the comparison of L1 and a first-order logic 
would give us a better notion of the scope of L1. 

Let’s consider a many-sorted first-order logic [11]. According to the definition, the 
alphabet of such a language consists of seven sets of symbols: 

1) a countable set S � {bool} of sorts (or types) containing the special sort bool 
such that S is non-empty and does not contain bool; 

2) logical connectives: � (conjunction), � (disjunction), � (implication) and � 
(equivalence) that are all of rank (bool 	 bool � bool), 
 (negation) of rank 
(bool � bool) and � (a bottom concept) of rank (� � bool); 

3) quantifiers: s (universal quantifier) and �s (existential quantifier) for every set 
s�S; 

4) an equality symbol: =s of rank (s 	 s � bool) for every set s�S; 
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5) variables: a countably infinite set Vs = {x0, x1, x2, ...} for every set s�S each 
variable xi being of rank (� � s); 

6) auxiliary symbols: “(” and “)”; 
7) an alphabet L of non-logical symbols consisting of: 

a. function symbols: a countable set FS = {f0, f1, ...} and a rank function r: FS 
� S+ 	 S (S+ contains all the words of S excepting the empty word, that is, 
all the strings of length n>0 whose all elements belong to the set S), 
assigning a pair r(f) = (u,s) called rank to every function symbol f; the 
string u is called the arity of f, and the symbol s�S – the sort (or type) of f; 

b. constants: a countable set CSs = {c0, c1, ...} for every set s�S each ci being 
of rank (� � s); 

c. predicate symbols: a countable set PS = {P0, P1, ...}and a rank function r: 
PS � S* 	 {bool} (S* contains all the words of S including the empty 
word) assigning a pair r(P) = (u, bool) to each predicate symbol P; the 
string u is called the arity of P. 

It is assumed that all the sets Vs, FS, CSs and PS is mutually disjoint for every 
possible value of s�S. 

Taking into account such a definition, terms and atomic formulae in the first-order 
logic are defined as follows: 

1) every constant and every variable of sort s is a term of sort s; 
2) if t1, ..., tn are terms, each ti of sort ui, and f is a function symbol of rank (<u1, 

..., un> � s), then f(t1, ..., tn) is a term of sort s; 
3) every predicate symbol of arity �, as well as the bottom concept (�) is an 

atomic formula; 
4) if t1 and t2 are terms of sort s, then =s(t1, t2) is an atomic formula; 
5) if t1, ..., tn are terms, each ti of sort ui, and P is a predicate symbol of arity u1, 

..., un, then P(t1, ..., tn) is an atomic formula. 
Formulae are defined as follows: 
1) every atomic formula is a formula; 
2) for any two formulae A and B, (A�B), (A�B), (A�B), (A�B) and 
A are also 

formulae; 
3) for any variable x of sort s and any formula A, sx(A) and �sx(A) are also 

formulae. 
Let’s look now at a subset of full many-sorted first-order logic called the language 

P-, that contains only binary predicate symbols and functions with only one argument. 
In that case, the alphabet of the language P- can be defined in the following manner: 

1) a countable set S � {bool} of sorts (or types) containing the special sort bool 
such that S is non-empty and does not contain bool; 

2) logical connectives: � (conjunction) and � (disjunction) of rank (bool 	 bool 
� bool), 
 (negation) of rank (bool � bool) and � (a bottom concept) of rank 
(� � bool); 

3) quantifiers: s (universal quantifier) and �s (existential quantifier) for every 
set s�S; 

4) an equality symbol: =s of rank (s 	 s � bool) for every set s�S; 
5) variables: a countably infinite set Vs = {x0, x1, x2, ...} for every set s�S each 

variable xi being of rank (� � s); 
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6) auxiliary symbols: “(” and “)”; 
7) an alphabet L of non-logical symbols consisting of: 

a. function symbols: a countable set FS = {f0, f1, ...} and a rank function r: FS 
� S 	 S, assigning a pair r(f) = (s,s) to every function symbol f; 

b. constants: a countable set CSs = {c0, c1, ...} for every set s�S each ci being 
of rank (� � s); 

c. predicate symbols: a countable set PS = {P0, P1, ...}and a rank function r: 
PS � S2 	 {bool}, assigning a pair r(P) = (<s,s>, bool) to each predicate 
symbol P. 

So terms and atomic formulae in P- can be defined as follows: 
1) every constant and every variable of sort s is a term of sort s; 
2) if t is a term of sort u, and f is a function symbol of rank (u � s), then f(t) is a 

term of sort s; 
3) � is an atomic formula; 
4) if t1 and t2 are terms of sort s, then =s(t1, t2) is an atomic formula; 
5) if t1 and t2 are terms, each ti of sort ui, and P is a predicate symbol of arity <u1, 

u2>, then P(t1, t2) is an atomic formula. 
Formulae in P- are defined as follows: 
1) every atomic formula is a formula; 
2) for any two formulae A and B, (A�B), (A�B) and 
A are also formulae; 
3) for any variable x of sort s and any formula A, sx(A) and �sx(A) are also 

formulae. 
Now it is possible to see some similarities between languages P- and L1. Although 

different terms are used to define these two languages, it is possible to establish some 
links between them (see Table 2). 

 

Table 2. Linking concepts of languages P- and L1 

Concept of P- Concept of L1 
The set of sorts S The set C � {Integer, Real, String, 

Boolean} where C – the set of all 
classes found in the metamodel used 

The bottom concept �� Boolean value false 
Other logical connectives Will be interpreted in the context 
Existential quantifier �s where s�C, 
and C – the set of all classes found in 
the metamodel used 

The command “first” 

Universal quantifier s where s�C, and 
C – the set of all classes found in the 
metamodel used 

Will be interpreted by transforming the 
expression containing the universal 
quantifier into the form of that 
containing an existential quantifier 

The equality symbol =s where 
s�{Integer, Real, String, Boolean} 

The command “var” 

The equality symbol =s where s�C, and 
C – the set of all classes found in the 
metamodel used 

The command “pointer” 
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The set of variables Vs where 
s�{Integer, Real, String, Boolean} 

Variables of primitive data types, 
declared by the keyword “var” 

The set of variables Vs where s�C, and 
C – the set of all classes found in the 
metamodel used 

Pointers to instances, declared by the 
keyword “pointer” 

Auxiliary symbols “(” and “)” Will be interpreted in the context 
The function symbol with one 
argument 

The attribute of a class 

Constants of types Constants of primitive data types 
Binary predicate symbols P(t1, t2) 
where t1, t2�C, and C – the set of all 
classes found in the metamodel used 

The command “link” 

 
Theorem. For each formula of the predicate language P-, there exists a begin-end 

expression in the language L1 of the same truth value. 
Proof. A constructive proof is provided for this theorem. For the theorem to be 

proven it is sufficient to produce a valid begin-end expression for each type of 
formulae of P- shown in Table 2. To do this, two auxiliary formulae need to be 
introduced: 

1) expr: <P- formula> � <L1 begin-end expression> – a function assigning an 
L1 begin-end expression to the given P- formula; 

2) insert: <L1 begin-end expression> 	 <String> � <L1 begin-end expression> – 
a function calculating a new begin-end expression from the existing one by 
adding the given label name (second parameter) to missing places of the initial 
expression (to “goto” commands without a label and to non-existing “else” 
branches of those commands that can contain an “else” branch). 

All types of P- formulae and their respective L1 begin-end expressions are shown 
in Table 3. (labels “unicalLabel”, “unicalLabelForA”, and “endLabel”, as well as 
pointers “unicalPtrName1” and “unicalPtrName2”, and variables “unicalVarName1” 
and “unicalVarName2” are considered to be unique in  the whole given 
procedure/function). 
 

 

Table 3. Construction of an L1 code from P- formulae 

F expr(F) 
�� goto; 
=s(t1,t2) where s�{Integer, 
Real, String, Boolean} 

setVar unicalVarName1=t1; 
setVar unicalVarName2=t2; 
var unicalVarName1==unicalVarName2; 

=s(t1,t2) where s�C, and C – 
the set of all classes found in 
the metamodel used 

setPointer unicalPtrName1=t1; 
setPointer unicalPtrName2=t2; 
pointer unicalPtrName2==unicalPtrName2; 

P(t1, t2) setPointer unicalPtrName1=t1; 
setPointer unicalPtrName2=t2; 
link unicalPtrName1.P.unicalPtrName2; 
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A�B expr(A) 
expr(B) 

A�B insert(expr(A),”unicalLabel”) 
goto endLabel; 
label unicalLabel; 
expr(B) 
label endLabel; 


A insert(expr(A),”unicalLabel”) 
goto; 
label unicalLabel; 

�sx(A) first x:S suchthat 
begin 
   expr(A) 
end; 

sx(A) � 
�sx(
A) first x:S suchthat 
begin 
   insert(expr(A),”unicalLabelForA”) 
   goto; 
   label unicalLabelForA; 
end else unicalLabel; 
goto; 
label unicalLabel; 

 
It is worth mentioning that it is easier to use the form of an existential quantifier 

and to produce a begin-end expression based on that in the case of a universal 
quantifier. 

In order to get a clearer understanding of the functions used to construct the L1 
code, examples of all the different cases are given in Table 4. 
 

Table 4. Construction of an L1 code from P- formulae – examples 

F expr(F) 
�� goto; 
=Integer(x,17) setVar unicalVarName1=x; 

setVar unicalVarName2=17; 
var unicalVarName1==unicalVarName2; 

=Person(p,q) setPointer unicalPtrName1=p; 
setPointer unicalPtrName2=q; 
pointer unicalPtrName1== unicalPtrName2; 

father(p,q) setPointer unicalPtrName1=p; 
setPointer unicalPtrName2=q; 
link unicalPtrName1.father.unicalPtrName2; 

(father(p,q)�� 
Integer(age(p),18)) 

setPointer unicalPtrName1=p; 
setPointer unicalPtrName2=q; 
link unicalPtrName1.father.unicalPtrName2; 
setPointer unicalPtrName3=p; 
attr unicalPtrName3.age==18; 

122 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd   122LURaksti733-datorzin.indd   122 2008.03.31.   15:06:162008.03.31.   15:06:16



((father(p,q) � = 
Integer (age(p), 18)) �= 
Integer  (age(q),18)) 

setPointer unicalPtrName1=p; 
setPointer unicalPtrName2=q; 
link unicalPtrName1.father.unicalPtrName2 else 
unicalLabel; 
setPointer unicalPtrName3=p; 
attr unicalPtrName3.age==18 else unicalLabel; 
goto endLabel; 
label unicalLabel; 
setPointer unicalPtrName4=q; 
attr unicalPtrName4.age==18; 
label endLabel; 


=Integer(age(p),18) setPointer unicalPtrName1=p; 
attr unicalPtrName1.age==18 else unicalLabel; 
goto; 
label unicalLabel; 

�Personp (=Integer(age(p),18)) first p:Person suchthat 
begin 
   setPointer unicalPtrName1=p; 
   attr unicalPtrName1.age==18; 
end; 

Personp (=Integer(age(p),18)) � 

�Personp 
(
=Integer(age(p),18)) 

first p:Person suchthat 
begin 
   setPointer unicalPtrName1=p; 
   attr unicalPtrName1.age==18 else 
unicalLabelForA; 
   goto; 
   label unicalLabelForA; 
end else unicalLabel; 
goto; 
label unicalLabel; 

 
Although the construction of begin-end expressions is inductive in most cases, it is 

easy to see that it is indeed possible to construct a begin-end expression with the same 
truth value as that of the given P- formula in each case. End of proof. 

Actually, begin-end expressions are even more powerful than the predicate 
language mentioned above. This is so mainly because of three reasons [10]: 

1) it is possible to operate with variables of primitive types in begin-end 
expressions; 

2) a begin-end expression specifies the command execution order during the 
pattern matching (i.e., the order in which instances are traversed); 

3) when a pattern is matched, all its elements are assigned an identity which can 
be used further for referencing these elements. 
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3.4   Transformation Language L2 
 

The new feature of the language L2 if compared to the language L1 is the possibility 
to make loops. A special command exists in L2 with which it is possible to visit either 
all instances of the specified class or just those instances of the class that match the 
given pattern. 

In the metamodel of L2, one class is added (“ForeachCom”) if compared to the 
metamodel of L1 (Fig. 6, bold class and associations are new in L2). Two 
associations from this class to the class “ComBlock” exist – one for the commands of 
the loop and the other for the pattern definition block of the loop. 

DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

Directive
val: String
file_name: String

Command

Transformation
name: String

Expression

EElem

Attr
name: String
classPointer: String
type: String

Funct
name: String
type: String

Const
val: String
type: String

Op
val: String

Brack
val: String

Param
name: String
type: String

ForeachCom
name: String
text: String

Var
name: String
type: String
isPointer: Boolean

owner
0..1

param 0..1

prev
0..1

next0..1
dir
*tr

0..1

pf
0..1 block

0..1

def*
block 0..1

defBlock
0..1 pf

0..1
block 0..1

start0..1

tr 0..1

pf*

expr0..1

sCom
0..1

expr
0..1 eCom

0..1
expr 0..1

start0..1
prev
0..1

next0..1

funct 0..1
start0..1

prev
0..1

next0..1

stCom
0..1

suchthat
0..1

feCom
0..1

foreach
0..1

prev
0..1

next0..1

stCom_For
0..1

suchthat
0..1

 
Fig. 6. The metamodel of the transformation language L2 
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The textual syntax for a loop command is as follows: 
foreach <pointerName1> : <className> [ from  
  <pointerName2> by <roleName> ] [ suchthat 
begin 
 <L2Commands> 
end ] 
do 
begin 
 <
end; 

L2Commands> 

The semantics of the “suchthat” block is the same as in the case of the language 
L1. Since this block is optional, the semantics of the “foreach” command is as follows 
– every instance of the specified class that matches the given pattern (if such exists; 
otherwise it is considered that every instance is to be taken) is traversed and all the 
commands of the “do” block are executed for it. 

Let’s consider some examples. Increase the value of the attribute “age” of all 
instances of the class “Person” by 1 (all examples in this section are based on the 
metamodel seen in Fig. 4): 
foreach p:Person do 
begin 
 
end; 
setAttr p.age=p.age+1; 

Increase the age of all persons younger than 18 by 1: 
foreach p:Person suchthat 
begin 
 attr p.age<18; 
end 
do 
begin 
 
end; 
setAttr p.age=p.age+1; 

Nested loop example – set the value of the attribute “hasParentUnder18” to true for 
those persons that are sons of a person younger than 18: 
foreach parent:Person suchthat 
begin 
 attr parent.age<18; 
end 
do 
begin 
 foreach p:Person suchthat 
 begin 
  link parent.son.p; 
 end 
 do 
 begin 
  setAttr p.hasParentUnder18=true; 
 
end; 
end; 
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The transformation that solves the problem proposed in Section “2.3. Model 
transformation example in the language L0” can resemble this in the language L2: 
transformation example; 
 main procedure main(); 
  pointer c:Course; 
  pointer s:Student; 
  var x:Real; 
  var count:Integer; 
 begin; 
  first c:Course suchthat 
  begin 
   attr c.title=="Operating Systems"; 
  end else endOfProg; 
  setVar x=0; 
  setVar count=0; 
  foreach s:Student from c by student suchthat 
  begin 
   attr s.age>=18; 
  end 
  do 
  begin 
   setVar count=count+1; 
   setVar x = x + ( s.mark1:Real + s.mark2:Real +  
     s.mark3:Real + s.mark4:Real + s.mark5:Real +  
     s.mark6:Real + s.mark7:Real + s.mark8:Real ) / 8; 
  end; 
  var count>0 else writeGood; 
  setVar x=x/count; 
  var x<8 else writeGood; 
  setAttr c.hasGoodStudents=false; 
  goto endOfProg;  
  label writeGood; 
  setAttr c.hasGoodStudents=true; 
 label endOfProg;  
 end; 
endTransformation; 
 

3.5   Transformation Language L3 
 

The new feature of the language L3 if compared to the language L2 is the branching 
command – a standard “if-then-else” construction than can be used instead of 
constructions made using “goto” commands in some cases. 

A new class is added in the metamodel of L3 if compared to the metamodel of L2 
– “IfCom” (Fig. 7, bold class and associations are new in L0’). Three associations 
from this command to the class “ComBlock” exist – one for the “if” clause, one for 
the “then” clause, and one for the “else” clause of the command. 
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Fig. 7. The metamodel of the transformation language L3 

 
The situation with “then” and “else” blocks is intuitively quite clear – these blocks 

must contain commands to be executed in the case of respectively true and false value 
of some condition. But what about the “if” block? This is again the case of begin-end 
expressions – an expression is attached to the “if” clause of an “IfCom” command, 
and so the condition of the “IfCom” command is true if the respective begin-end 
expression is true. 

The textual syntax of the branching command is as follows: 
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DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

Directive
val: String
file_name: String

Command

Transformation
name: String

Expression

EElem

Attr
name: String
classPointer: String
type: String

Funct
name: String
type: String

Const
val: String
type: String

Op
val: String

Brack
val: String

Param
name: String
type: String

ForeachCom
name: String
text: String

IfCom

Var
name: String
type: String
isPointer: Boolean

owner
0..1

param 0..1

prev
0..1

next0..1 dir *
tr0..1

pf
0..1 block 0..1

def*
block 0..1

defBlock
0..1 pf

0..1 block 0..1

start0..1

tr 0..1
pf*

expr0..1

sCom
0..1

expr
0..1 eCom

0..1
expr 0..1

start0..1
prev
0..1

next0..1

funct 0..1 start
0..1

prev
0..1

next0..1

stCom
0..1

suchthat
0..1

feCom
0..1

foreach
0..1

iCom
0..1

if
0..1

tCom
0..1

then
0..1

eCom
0..1

else
0..1

prev
0..1

next0..1

stCom_For
0..1

suchthat
0..1
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if 
begin 

<L3Commands> 
end 
then 
begin 

<L3Commands> 
end 
[ else 
begin 

<L3Commands> 
end ]; 
Since the “else” part is optional, it is possible that no commands are to be executed 

in the case of false value of the condition. 
Let’s consider some examples. Let’s assume we have a pointer p pointing to some 

instance of the class “Person”. Increase the value of the attribute 'age” of this instance 
by 1 if it is less than 18 (all examples in this section are based on the metamodel 
shown in Fig. 4): 
if 
begin 
 attr p.age<18; 
end 
then 
begin 
 setAttr p.age=p.age+1; 
end; 
Increase the age of the person pointed to by p by 1 if it is less than 18, otherwise 

decrease it by 1: 
if 
begin 
 
end 
attr p.age<18; 

then 
begin 
 setAttr p.age=p.age+1; 
end 
else 
begin 
 setAttr p.age=p.age-1; 
end; 
A more complicated example – assign a value “Less than hundred” or “Hundred or 

more” to a String variable s based on the fact whether the total age of all persons 
younger than 18 is less than 100 or not: 
if 
begin 
 setVar sum=0; 
 foreach p:Person suchthat 
 begin 
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  attr p.age<18; 
 end 
 do 
 begin 
  setVar sum=sum+p.age; 
 end; 
 var sum<100; 
end 
then 
begin 
 setVar s=”Less than hundred”; 
end 
else 
begin 
 setVar s=”Hundred or more”; 
end; 
In this example, the value of the variable sum could also be calculated before the 

branching command, however, it can easily be done in the same command when the 
semantics of the variable tells it is only needed in the “IfCom” command. 

The transformation that solves the problem proposed in Section “2.3. Model 
transformation example in the language L0” can resemble this in the language L3: 
transformation example; 
 main procedure main();  
  pointer c:Course; 
  pointer s:Student; 
  var x:Real; 
  var count:Integer; 
 begin; 
  first c:Course suchthat 
  begin 
   attr c.title=="Operating Systems"; 
  end else endOfProg;  
  setVar x=0; 
  setVar count=0; 
  foreach s:Student from c by student suchthat 
  begin 
   attr s.age>=18; 
  end 
  do 
  begin 
   setVar count=count+1; 
   setVar x = x + ( s.mark1:Real + s.mark2:Real +  
     s.mark3:Real + s.mark4:Real + s.mark5:Real +  
     s.mark6:Real + s.mark7:Real + s.mark8:Real ) / 8; 
  end; 
  if 
  begin 
   var count>0; 
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   setVar x=x/count; 
   var x<8; 
  end 
  then 
  begin 
   setAttr c.hasGoodStudents=false; 
  end 
  else 
  begin 
   setAttr c.hasGoodStudents=true; 
  end; 
  label endOfProg; 
 end; 
endTransformation; 
A full syntax definition of the transformation language L3 based on Backus-Naur 

notation [12] is given in Appendix A. 
 
4   The implementation of model transformation languages L0’, L1, 
L2, and L3 
 
4.1   The Main Principles of the Implementation of L0’ Until L3 
 
As mentioned in the first sections of this paper, there already exists an effective 
implementation of the language L0, that is, a compiler to the language C++. Since 
languages L0’, L1, L2, and L3 have been built based on the language L0, a very 
logical step would be the implementation of these languages through the language L0. 
So actually the basic idea of the implementation of languages L0’ until L3, is to build 
a compiler for each of the languages L0’, L1, L2, and L3 to L0. However, for the task 
to be accomplished more easily, each compiler will be built to the language that is a 
direct ancestor to it instead of building each compiler to the language L0. Since every 
next language in the Lx family was built based on the previous one by just adding 
some new features, such an implementation is possible. The algorithm used to 
implement these compilers is called the bootstrapping algorithm [13]. The 
bootstrapping principle is to build a compiler of one language to the other language 
that is written in the target language. So, translating this into the language of Lx – to 
write a compiler in L0 that transforms an L0’ program into an L0 program, then to 
write a compiler in L0’ that transforms an L1 program into an L0’ program, then to 
write a compiler in L1 that transforms an L2 program into an L1 program, and finally 
to write a compiler in L2 that transforms an L3 program into an L2 program. When 
turning to the details of the actual implementation, it is worth mentioning that each 
compiler can actually be written in L0 (because L0 is a subset of every other Lx 
language). In doing so, the idea of bootstrapping algorithm is not violated – it can still 
be considered that each compiler is written in the target language perhaps just without 
using all features the language offers. 

In contrast with the ideas of the traditional compiler building [14] in which an 
analysis of textual forms of programs is taken for a base, the idea of the bootstrapping 

130 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd   130LURaksti733-datorzin.indd   130 2008.03.31.   15:06:212008.03.31.   15:06:21



algorithm is very convenient in the case of model transformation languages – any 
program in a model transformation language is considered as a particular model in the 
metamodel of that particular language. If both metamodels of the source and target 
languages are known, as well as the particular source model corresponding to the 
program to be compiled is known, the compilation task transforms into a standard 
model transformation task. 

When consideringthe possibility to implement the bootstrapping algorithm, it must 
be verified whether it is really possible for each program of the source language to 
make an equivalent program in the target language (this could not be possible due to 
new features of the target language). Therefore it must be verified for the case of 
languages Lx immediately. 

The main question about the compiler from L0’ to L0 is whether it is possible for 
every arithmetic expression of L0’ to build an equivalent construction in L0. It is easy 
to see that every such expression can be divided into some binary or unary 
expressions that are allowed in L0 (by assigning intermediate results to temporary 
variables). Consequently it is really possible to build a compiler from L0’ to L0. 

In L1, a pattern matching is possible. The question that arises – is each L1 pattern 
block translatable into L0’? The answer is – yes. Every pattern block can be simulated 
with L0’ commands (see Table 5). The general idea is to make some extra labels and 
to add a label to commands without any labels to intercept those control flows that 
correspond to the situation in L1 the pattern matching fails. 
 

 

Table 5. The principle of the implementation of a pattern definition block 

L1 L0’ 
first <ptrName1>:<className> 
[from <ptrName2> by <roleName>] 
suchthat 
begin 
   <command_1>; 
   <command_2>; 
   ... 
   <command_n>; 
end 
[else <labelName>]; 

first <ptrName1>:<className> [from 
<ptrName2> by <roleName>] [else 
<labelName>]; 
label ___L_i; 
<command_1> [else ___L_i+1]; 
<command_2> [else ___L_i+1]; 
... 
<command_n> [else ___L_i+1]; 
goto ___L_i+2; 
label ___L_i+1; 
next <ptrName1> [else <labelName>]; 
goto ___L_i; 
label ___L_i+2; 

next <ptrName> suchthat 
begin 
   <command_1>; 
   <command_2>; 
   ... 
   <command_n>; 
end 
[else <labelName>]; 

next <ptrName> [else <labelName>]; 
label ___L_i; 
<command_1> [else ___L_i+1]; 
<command_2> [else ___L_i+1]; 
... 
<command_n> [else ___L_i+1]; 
goto ___L_i+2; 
label ___L_i+1; 
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next <ptrName> [else <labelName>]; 
goto ___L_i; 
label ___L_i+2; 

 
Of course, “else” branches are attached to only those commands which can (but do 

not) have an “else” branch. A label in the form “___L_i” is considered to be a new 
label that cannot be found in any L0’ program written by the user. If a command of 
the pattern definition block proves to be an instance searching command with a 
“suchthat” block, it needs to be expanded to L0’ commands recursively. 

The question about the language L2 – is every “foreach” loop writable in L1? 
Again, the answer is implicitly clear – it is! Since there are commands “goto” and 
“label” in L1, as well as “else” branches, the control flow can be moved around to 
one’s liking, inter alia, making a loop over either all instances of some particular 
class, or just those instances that match the specified pattern (pattern matching 
constructions are present in L1, so they do not need to be transformed in any way). 
The scheme of the implementation of loops is shown in Table 6. 
 

Table 6. The principle of the implementation of a “foreach” loop 

L2 L1 
foreach <ptrName> : <className> 
[suchthat 
begin 
   <command_1>; 
   <command_2>; 
   ... 
   <command_n>; 
end] 
do 
begin 
   <do_command_1>; 
   <do_command_2>; 
   ... 
   <do_command_k>; 
end; 

first <ptrName> : <className> 
[suchthat 
begin 
<command_1>; 
<command_2>; 
... 
<command_n>; 
end] 
else __L_i; 
label __L_i+1; 
<do_command_1>; 
<do_command_2>; 
... 
<do_command_k>; 
next <ptrName> [suchthat 
begin 
<command_1>; 
<command_2>; 
... 
<command_n>; 
end] 
else __L_i; 
goto __L_i+1; 
label __L_i; 

 
Again, labels in form “__L_i” are not supposed to be found in any L1 program 

written by the user. 
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The question about the language L3 – is every branching construction writable in 
L2? The answer is even more obvious in this case than in the previous ones – every 
branching construction can be simulated using “goto” and “label” commands in a 
standard way (Table 7). As shown above, “else” branches are added here to intercept 
the cases when the “if” condition (begin-end expression) fails. 
 

Table 7. The principle of the implementation of a branching command 

L3 L2 
if 
begin 
   <if_command_1>; 
   <if_command_2>; 
   ... 
   <if_command_n>; 
end 
then 
begin 
   <then_command_1>; 
   <then_command_2>; 
   ... 
   <then_command_k>; 
end 
[else 
begin 
   <else_command_1>; 
   <else_command_2>; 
   ... 
   <else_command_l>; 
end]; 

<if_command_1> [else _L_i]; 
<if_command_2> [else _L_i]; 
... 
<if_command_n> [else _L_i]; 
<then_command_1>; 
<then_command_2>; 
... 
<then_command_k>; 
goto _L_i+1; 
label _L_i; 
[<else_command_1>; 
<else_command_2>; 
... 
<else_command_l>;] 
label _L_i+1; 

 

 
Again, labels in form “_L_i” are not supposed to be found in any L2 program 

written by user. 
 
4.2   Main Problems of the Implementation of L0’ Until L3 
 
When compiling a program from one language to another, new “label” commands 
may appear that must be unique in the scope of the whole particular 
procedure/function. Therefore, some limitations of naming conventions must exist. In 
the case of languages L0’ until L3 these limitations are as follows – the user cannot 
make labels in L1 starting with three underscores (“_”), in L2 – starting with two 
underscores, and in L3 – starting with at least one underscore. If so, compilers of L1, 
L2, and L3 can make new labels starting with some underscores (so many that the 
user is allowed to make such a label in the target language, but is not allowed in the 
source language) and following by the symbol “L” and an integer uniquely generated 
for every new label. In the case of the L0’ compiler, no labels are made, so no action 
needs to be performed. 
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In the case of L0’ compilation, some new variables may appear that must be 
unique in the scope of the whole particular procedure/function. Therefore, some 
limitations of naming conventions must exist. The limitation offered is similar to the 
case of labels – to forbid declaring variables starting with an underscore in languages 
L0’, L1, L2, and L3. So the compiler of L0’ will make variables starting with an 
underscore and followed by a string “var” and an integer. 

When compiling an L2 program to an L1 program, two instance searching 
commands (“first” and “next”) arise from each loop command. If the loop command 
contains a pattern definition block, both instance searching commands will contain 
this block as well. In terms of models, this means that there is one command block 
assigned to two “FNCom” commands. When passing to the next step – the 
compilation of L1 – a problem arises – a compiler processes the first of two instance 
searching commands mentioned above and then deletes the pattern definition block 
from the metamodel (in order to make the model respective to L0’ program). So the 
information about the fact that the other command had this block as well is lost. 
Hence to solve this problem, it is forbidden to have one command block attached to 
more than one command. Therefore, in the compilation of L2, a copy of the command 
block must be made. It means that a copy of each command of the particular block 
must be made. There is no problem in regard to other commands, but a problem arises 
when “label” commands come in place – how to preserve the uniqueness of labels? 
The solution here is to make a new unique label from the old unique label by simply 
concatenating the label name with itself. For example, if the old label name was 
“__L17”, the new one is “__L17__L17”; if the old one was “myLabel”, the new one 
is “myLabelmyLabel”. The same conventions relate to “goto” commands and “else” 
branches as well. 
 
4.3   The Whole Compilation Process – From L3 Up To L0 
 
Before turning to the compilation process, one more concept needs to be explained, 
and that concept is the lexem of the transformation language L3. The metamodel of 
lexems – basic syntactical elements of a program – is very simple (Fig. 8). Lexems 
are one of the intermediate steps in the full compilation process from L3 up to L0. 
 

Le
val: String
sort: String

prev
0..1

next0..1

 
Fig. 8. The metamodel of lexems 

 
The full compilation process transforming one text file to another consists of the 

following components: 
1) initialization tasks – the deletion of any old models of metamodels of L3 and 

lexems, and the generation of the new model of lexems from the input text file 
specified by the user; 
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2) transformation of the model of lexems into an L3 model; 
3) transformation of the L3 model into an L2 model; 
4) transformation of the L2 model into an L1 model; 
5) transformation of the L1 model into an L0’ model; 
6) transformation of the L0’ model into an L0 model; 
7) printing of the L0 model to an output text file specified by the name of the 

transformation. 
Owing to the fact that pre- and post-conditions of each component are precisely 

clear, it is possible to easily use just a subset of all components instead of using the 
full compiler as well. It can be useful, for example, in cases when L3 is used as an 
intermediate language in the compilation of some higher-level language as it is done 
in the compilation of the graphical model transformation language MOLA [15] – 
there is no need to perform neither initialization tasks nor the “lexems to L3” 
transformation because the L3 model has got into the metamodel of L3 in some other 
way. 

The full L3 to L0 compiler is available in the Lx homepage [16]. 
 
5   Conclusions and future work 
 
It has been evidenced that the bootstrapping method justifies itself in the use of 
compiler building if operating with model transformation languages. With this 
method, it is possible to build higher and higher-level model transformation languages 
that are easy to compile to some lower-level language. The sequence of such 
languages – the Lx language family – has been stopped at the language L3 which is of 
sufficiently high level to be used in practical model transformation tasks. As a proof 
of this, a transformation-based graphical tool-building platform GrTP is being 
developed using the language L3 as its base language [17]. The other use case of the 
language L3 is the implementation of even higher-level languages. The graphical 
model transformation language MOLA [6,7] has been implemented by bootstrapping 
method, using the language L3 as an intermediate language in this process [15]. 

The further work relating to the Lx language family includes, but is not limited to 
supplementing languages L0’, L1, L2, and L3 with the features of the language L0+ – 
the extended version of L0 [1]. 
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Appendix 
 
A. L3 syntax definition based on Backus-Naur notation 
 
<L3Program>  ::= <transformation> [ <L3Program> ] 
<transformation> ::= transformation <identifier> ; 
<transfPartList> endTransformation; 
<identifier> ::= <letter> [ <string> ] 
<specialID>  ::= <specialLetter> [ <string> ] 
<string>  ::= <letter> [ <string> ] | <digit> [ 
<string> ] 
<letter>  ::= <specialLetter> | _ 
<specialLetter> ::= a | b | c | d | e | f | g | h | i | 
j | k | l | m | n | o | p | q | r | s | t | u | v | w | x 
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| y | z | A | B | C | D | E | F | G | H | I | J | K | L | 
M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z 
<digit>  ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 
9 
<transfPartList> ::= <transfPart> [ <transfPartList> ] 
<transfPart> ::= <nativeProc> | <nativeFunct> | 
<directive> | <debug> | <varDeclaration> | <procedure> | 
<function> 
<nativeProc> ::= native procedure <identifier> ( [ 
<paramList> ] ); 
<paramList>  ::= <parameter> [ , <paramList> ] 
<simpleParamList> ::= <identifier> [ , <simpleParamList> 
] 
<parameter>  ::= <identifier> : <primTypeOrMMElem> 
<nativeFunct> ::= native function <identifier> ( [ 
<paramList> ] ): <primTypeOrMMElem> ; 
<directive>  ::= <dirType> ” <fileName> ”; 
<dirType>  ::= useMM | include | useLib | useUnit 
<fileName>  ::= [ <specialLetter> :\] [ 
<folderList> ] <string> [ . <string> ] 
<folderList> ::= <string> \ [ <folderList> ] 
<debug>  ::= DEBUG_ON; | DEBUG_OFF; 
<varDeclaration> ::= imitiveVarDec > | <pointerDecl<pr l > 
<primitiveVarDecl>::= var <specialID> : <primTypeName> ; 
<primTypeName> ::= Integer | Real | String | Boolean 
<pointerDecl> ::= pointer <identifier> : 
<metaModelElement> ; 
<metaModelElement>::= <letter> [ <stringPlus> ] 
<stringPlus> ::= <stringPlusElem> [ <stringPlus> ] 
<stringPlusElem> ::= <letter> | <digit> | # | :: 
<procedure>  ::= [ main ] procedure <identifier> ( [ 
<paramList> ] ); [ <varList> ] begin; [ <L3CommandList> ] 
end; 
<function>  ::= function <identifier> ( [ 
<paramList> ] ): <primTypeOrMMElem> ; [ <varList> ] 
begin; [ <L3CommandList> ] end; 
<primTypeOrMMElem>::= <primTypeName> | <metaModelElement> 
<varList>  ::= <varDeclaration> [ <varList> ] 
<L3CommandList> ::= <L3Command> [ <L3CommandList> ] 
<L3Command>  ::= <call> | <return> | <first> | 
<next> | <goto> | <label> | <addObj> | <addLink> | 
<deleteObj> | <deleteLink> | <setPointer> | <setPointerF> 
| <setVar> | <setVarF> | <setAttr> | <type> | <var> | 
<pointer> | <attr> | <link> | <noLink> | <debug> | 
<foreach> | <if> 
<call>  ::= call <identifier> ( [ 
<simpleParamList> ] ); 
<return>  ::= return [ <identifier> ] ; 
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<first>  ::= first <identifier> : 
<metaModelElement> [ from <identifier> by 
<metaModelElement> ] [ suchthat begin [ <L3CommandList> ] 
end ] [ else <specialID> ] ; 
<next>  ::= next <identifier> [ suchthat begin 
[ <L3CommandList> ] end ] [ else <specialID> ] ; 
<goto>  ::= goto [ <specialID> ] ; 
<label>  ::= label <specialID> ; 
<addObj>  ::= addObj <identifier> : 
<metaModelElement> ; 
<addLink>  ::= addLink <identifier> . 
<metaModelElement> . <identifier> ; 
<deleteObj>  ::= deleteObj <identifier> ; 
<deleteLink> ::= deleteLink <identifier> . 
<metaModelElement> . <identifier> ; 
<setPointer> ::= setPointer <identifier> = 
<identifier> ; 
<setPointerF> ::= setPointerF <identifier> = 
<identifier> ( [ <simpleParamList> ] ); 
<setVar>  ::= setVar <specialID> = <expression> ; 
<setVarF>  ::= setVarF <specialID> = <identifier> 
( [ <simpleParamList> ] ); 
<setAttr>  ::= setAttr <identifier> . 
<metaModelElement> = <expression> ; 
<type>  ::= <identifier> <pointerRelOp> 
<metaModelElement> [ else <specialID> ] ; 
<var>   ::= <identifier> <relationOperator> 
<expression> [ else <specialID> ] ; 
<pointer>  ::= <identifier> <pointerRelOp> 
<identifier> [ else <specialID> ]; 
<attr>  ::= attr <identifier> . 
<metaModelElement> <relationalOperator> <expression> [ 
else <specialID> ]; 
<link>  ::= link <identifier> . 
<metaModelElement> . <identifier> [ else <specialID> ] ; 
<noLink>  ::= noLink <identifier> . 
<metaModelElement> . <identifier> [ else <specialID> ] ; 
<foreach>  ::= foreach <identifier> : 
<metaModelElement> [ from <identifier> by 
<metaModelElement> ] [ suchthat begin [ <L3CommandList> ] 
end ] do begin [ <L3CommandList> ] end; 
<if>   ::= if begin [ <L3CommandList> ] end 
then begin [ <L3CommandList> ] end [ else begin [ 
<L3CommandList> ] end ] ; 
<expression> ::= <boolExpr> | <notBoolExpr> 
<boolExpr>  ::= true | false 
<notBoolExpr> ::= <exprPart> [ <arithmeticOper> 
<notBoolExpr> ] 
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<exprPart>  ::= <const> | <identifier> | 
<attribute> | <functionCall> 
<arithmeticOper> ::= + | - | * | / 
<const>  ::= <integerConst> | <realConst> | 
<stringConst> 
<integerConst> ::= <positiveNum> | (– <positiveNum> ) 
<positiveNum> ::= <digit> [ <positiveNum> ] 
<realConst>  ::= <positiveNum> . <positiveNum> | (– 
<positiveNum> . <positiveNum> ) 
<stringConst> ::= ” <extendedString> ” 
<extendedString> ::= <symbol> [ <extendedString> ] 
<symbol>  ::= <letter> | <digit> | 
<relationOperator> | ~ | ` | ! | @ | # | $ | % | ^ | & | 
( | ) | { | } | : | < | > | ? | [ | ] | ; | ‘ | \ | , | . 
| <space> 
<attribute>  ::= <identifier> . <metaModelElement> : 
<primTypeName> 
<functionCall> ::= <identifier> ( [ <simpleParamList> 
] ) 
<relationOperator>::= <pointerRelOp> | < | > | <= | >= 
<pointerRelOp> ::= == | != 
<space>  ::=   

Note – the non-terminal symbol <space> is considered to be a space symbol (32th 
symbol in the ASCII code table). 
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