

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Book of abstracts

April 12 – 14, 2012 Riga, Latvia

8th International Young Scientist Conference

"Developments in Optics and Communications"

Programme

Thursday, April 12

Registration

8:15 - 9:00

Opening Session

D.Jakovels	CHAIRMAN OF THE CONFERENCE	9:00 - 9:10
	SPEACH BY REPRESENTATIVE OF	9:10 - 9:20
	INSTITUTE OF SOLID STATE PHYSICS	
A.Lihachev	PRESENTATION ABOUT LASERLAB	9:20 - 9:35
	EUROPE	
D.Jakovels	PRESENTATION ABOUT SPIE	9:35 - 9:50
<u>A.Cinins</u>	PRESENTATION ABOUT OSA	9:50 - 10:05

Coffee Break

10:05 - 10:30

Atomic and Molecular Spectroscopy 1

		Atomic and Molecular Spectroscopy 1	
	Chairman: A.Cininsh		
Inv	<u>M.Tamanis</u>	HIGH RESOLUTION SPECTROSCOPY OF	10:30 - 11:15
		THE ELECTRONIC GROUND STATES AT	
		LARGE INTERNUCLEAR DISTANCE IN	
		RbCs AND KCs MOLECULES	
A1	N.Kolachevsky,	PRECISION SPECTROSCOPY OF ATOMIC	11:15 - 11:30
	A.Matveev, C.G.Parthey,	HYDROGEN AND THE PROTON CHARGE	
	K.Predehl, J.Alnis,	RADIUS	
	A.Beyer, R.Holzwarth,		
	T.Udem, T.Wilken,		
	M.Abgrall, D.Rovera,		
	C.Salomon, P.Laurent,		
	G.Grosche, T.Legero,		
	H.Schnatz, S.Weyers,		
	T.W.Hänsch		
A2	M.Bruvelis, N.N.Bezuglov,	DOPPLER PROFILE PARTICULARITIES IN	11:30 - 11:45
	A.Ekers	SUPERSONIC BEAMS FOR CIRCULAR,	
		SQUARE AND ARBITRARY COLLIMATING	
		APERTURES	
A3	L.Busaite, L.Kalvans	MODELLING REDUCTION OF	11:45 - 12:00
		ELECTROMAGNETIC RADIATION GROUP	
		VELOCITY IN ATOMIC VAPOR	
A4	U.Kalninsh, L.Kalvans	MODELING OF LIF SIGNAL IN ATOMIC	12:00 - 12:15
		MEDIA INCLUDING REALISTIC ENERGY	
		DISTRIBUTION WITHIN LASER BEAM	
		PROFILE	

5

Lunch

12:15 - 13:30

Atomic and Molecular Spectroscopy 2

		Atomic and Molecular Spectroscopy 2	
	Chairman: A.Spiss		
A5	A.Berzins, M.Auzinsh,	INVESTIGATION OF MAGNETO-OPTICAL	13:30 - 13:45
	R.Ferber, F.Gahbauer,	RESONANCES AT SUB-DOPPLER D ₂	
	A.Jarmola, L.Kalvans,	EXCITATION OF RUBIDIUM VAPOR	
	A.Papoyan, D.Sarkisyan	CONFINED IN AN EXTREMELY THIN	
		CELL	
A6	A.Mozers, M.Auzinsh,	LEVEL-CROSSING SPECTROSCOPY IN	13:45 - 14:00
	A.Berzins, R.Ferber,	ATOMIC RUBIDIUM AT NONZERO	
	L.Kalvans, F.Gahbauer and	MAGNETIC FIELD	
	A.Spiss		
A7	I.Birzniece, O.Nikolayeva,	HIGH RESOLUTION SPECTROSCOPY AND	14:00 - 14:15
	M.Tamanis, and R.Ferber	DESCRIPTION OF LOW-LYING ENERGY	
		LEVELS OF RbCs $B^{1}\Pi$ STATE	
A8	A.Kruzins, K.Alps,	HIGH RESOLUTION SPECTROSCOPIC	14:15 - 14:30
	O.Docenko, I.Klincare,	STUDY OF THE $A^{1}\Sigma^{+}-B^{3}\Pi$ COMPLEX IN	
	M.Tamanis, R.Ferber	RbCs	
A9	V.Zuters, O.Docenko,	HIGH RESOLUTION SPECTROSCOPY OF	14:30 - 14:45
	M.Tamanis, R.Ferber	THE EXCITED $(4)^{1}\Sigma^{+}$ ELECTRONIC STATE	
		OF THE RBCS MOLECULE	
A10	V.Fjodorovs, E.Bogans	SMALL-SIZE HFEDL COLD-SPOT	14:45 - 15:00
		INVESTIGATIONS WITH SPECTROMETRIC	
		AND THERMOPHOTOMETRIC METHODS	

Coffee Break

15:00 - 15:30

Biophotonics

		Diophotomes	
	Chairman: L.Asare	-	
Inv	T.Freivalds	FLUORESCENCE MICROSCOPY FOR	15:30 - 16:10
		CANCER CELL STUDIES	
B1	J.Lesins, M.Rumaka,	IMPACT OF PHYSIOLOGICAL STATE ON	16:10 - 16:25
	K.Rozniece, I.Ferulova,	SKIN AUTOFLUORESCENCE	
	J.Spigulis	PHOTOBLEACHING	
B2	D.Jakovels, J.Savickis,	SIMPLE AND FAST MONITORING AND	16:25 - 16:40
	J.Rubins, J.Spigulis	MAPPING OF SKIN BLOOD SUPPLY BY A	
		CONSUMER COLOR CAMERA	
B3	I.Saknite, M.Lange,	DISTANT DETERMINATION OF BILIRUBIN	16:40 - 16:55
	D.Jakovels, J.Spigulis	DISTRIBUTION IN SKIN BY RGB IMAGING	

Welcome Party

17:10 -

Friday, April 13

Optical Materials 1

		Optical Materials I	
	Chairman: A.Vembris	-	
01	M.Narels, E.Laizane,	INFLUENCE OF TEMPERATURE ON	9:00 - 9:15
	I.Muzikante	PHOTOISOMERISATION PROCESS OF	
		AZOBENZENE MOLECULES DOPED IN	
		POLYMER THIN FILM	
O2	S. Popova, A.Vembris,	GLASSY FORMING LOW MOLECULAR	9:15 - 9:30
	I.Muzikante	WEIGHT ORGANIC COMPOUNDS AND	
		THEIR ELECTROLUMINESCENT	
		PROPERTIES	
O3	<u>R.Grzibovskis</u> , J.Latvels,	RELATION BETWEEN ENERGY LEVELS	9:30 - 9:45
	I.Muzikante, B.Turovska	AND REDOX POTENTIAL OF DMABI	
		DERIVATIVES	
O4	<u>K.Pudzs</u> ,	DETERMINATION OF ENERGY	9:45 - 10:00
	J.V.Grazulevicius,	STRUCTURE OF BAY SUBSTITUTED	
	I.Muzikante	PERYLENE BISIMIDES IN THIN FILMS	
O5	D.Peckus, A.Devižis,	ULTRAFAST PROCESSES IN EXCITED	10:00 - 10:15
	D.Hertel, V.Gulbinas	MEROCYANINE MD376 FILMS	

Coffe Break

10:15 - 10:40

Optical Materials 2

		o priour refuter fuils =	
	Chairman: E.Nitiss		
Inv	M.Reinfelde	HOLOGRAPHY AND IT'S APPLICATION	10:40 - 11:25
06	J.Aleksejeva, J.Teteris	PHOTOINDUCED PROCESSES AND	11:25 - 11:40
		HOLOGRAPHIC RECORDING IN AZO-	
		DYED GELATIN FILMS	
07	V.Pranculis, V.Gulbinas,	ENERGY TRANSFER IN POROUS SILICON –	11:40 - 11:55
	R.Karpic	LASER DYE COMPOSITES	
08	E.Titavs, E.Nitiss, M.Rutkis	EFFECT OF CORONA POLING	11:55 - 12:10
		PARAMETERS ON POLYMER FILM POLING	
		EFFICIENCY	

Lunch

12:15 - 13:30

Vision Science 1

	Chairman: V.Karitans		
Inv	S.Fomins	COGNITIVE DISCOUNTING OR COLOR	13:30 - 14:10
		APPEARANCE PHENOMENA	
V1	R.Truksa, S.Fomins,	CHROMATIC SIGNALS TEMPORAL	14:10 - 14:25
	M.Ozolins	MODULATION AND LIGHT SENSITIVITY	
V2	K.Luse, S.Fomins	PHOTOGRAPHIC AND INK PRINTING	14:25 - 14:40
		COLORIMETRIC DIFFERENCE AND	
		SPECTRAL SPECIFICS	
V3	A. Pausus, E. Kassaliete,	SUBJECTIVE BLUR PERCEPTION	14:40 - 14:55
	R. Truksa	MEASUREMENTS USING COMPUTERIZED	
		IMAGE DEFOCUS	
V4	A.Kalteniece, G.Krumina	3D CINEMA AND HUMAN STEREOVISION	14:55 - 15:10

Coffee Break

15:10 - 15:30

	Chairman: S.Fomins	Vision Science 2	
V5	E.Kassaliete, E.Megne,	VISUAL WORD RECOGNITION IN NORMAL	15:30 - 15:45
	I.Lacis, S.Fomins	READING CHILDREN AND CHILDREN	
		WITH READING DIFFICULTIES	
V6	J.Jakovleva, G.Krumina,	METHOD OF PROTEOGLYCANS AND	15:45 - 16:00
	J.Albon	GLYCOSAMINOGLYCANS	
		DETERMINATION IN OPTIC NERVE HEAD	
V7	I.Timrote, G.Krumina,	DEVELOPMENT OF A METHOD TO	16:00 - 16:15
	T.Pladere, M.Skribe	EVALUATE PERIPHERAL VISUAL	
		PERCEPTION	
V8	I.Laure, G.Krumina	EFFECT OF COLOUR ON MONOCULAR	16:15 - 16:30
		DIPLOPIA IN THE CASE OF ASTIGMATISM	
V9	Z.Meskovska, D.Sice,	CONTRAST SENSITIVITY AND VISION	16:30 - 16:45
	G.Ikaunieks	ACUITY MEASURED WITH VISUAL	
		EVOKED POTENTIAL METHOD	

Coffee Break

16:45 - 17:10

Poster Session

17:10 -

Saturday, April 14

		Communications 1	
	Chairman: S.Berezins		
Inv	J.Porins	INVESTIGATION OF POLARIZATION	9:00 - 9:45
		DYNAMICS IN OPTICAL WAVELENGTH	
		DIVISION MULTIPLEXING	
		COMMUNICATION SYSTEMS	
C1	E.Nitiss, M.Rutkis	BASIC PRINCIPLES OF EO POLYMER	9:45 - 10:00
		WAVEGUIDE MODULATOR	
		DEVELOPMENT	
C2	A.Supe, J.Porins	ESTIMATION OF VARIABLES AFFECTING	10:00 - 10:15
	_	PARAMETRIC AMPLIFICATION IN FIBER	
		OPTICS	
C3	O.Ozolins, G.Ivanovs	NEW GENERATION ACCESS SYSTEM	10:15 - 10:30
		BASED ON DWDM-DIRECT WITH 55 GHZ	
		FIBER BRAGG GRATING	

Coffee Break

10:30 - 10:50

Communications 2

		Communications 2	
	Chairman: E.Nitiss		
C4	S.Olonkins, G.Ivanovs	COMPARISON OF CO AND COUNTER	10:50 - 11:05
		PROPAGATING RAMAN AMPLIFICATION	
		IN NONLINEARITY SENSITIVE DWDM	
		TRANSMISSION SYSTEMS	
C5	A.Udalcovs, V.Bobrovs	EVALUATION OF THE MAXIMUM	11:05 - 11:20
		PERMISSIBLE TRANSMISSION DISTANCE	
		FOR MIXED HDWDM SYSTEMS	

C6	I.Trifonovs, V.Bobrovs	PERFORMANCE ENHANCEMENT OF A BIDIRECTIONAL DWDM SOLUTION	11:20 - 11:35
C7	S.Berezins, V.Bobrovs	RESEARCH OF EDFA APPLICATION IN WDM SYSTEMS	11:35 – 11:50
C8	S.Spolitis, G.Ivanovs	A STUDY OF HIGH BIT RATE SPECTRUM- SLICED DWDM PON SYSTEM	11:50 - 12:05

Coffee Break

12:05 - 12:30

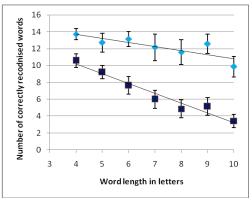
Closing Session

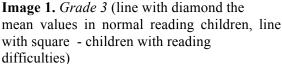
	CLOSING REMARKS	12:30 - 12:40
	Excursion	12:40 -

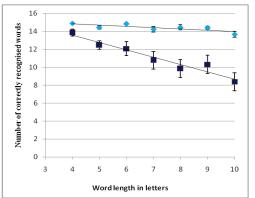
		Poster Session
P1	I.Mihailova, V.Gerbreders,	PREPARATION OF CUINSE ₂ POLYCRYSTALLINE THIN
	E.Tamanis, E.Sledevskis	FILMS BY SEQUENTIAL DEPOSITION OF ELEMENTS
P2	V.Kolbjonoks,	THIN FILMS CHALCOGENIDE AS-SE-S GLASSES
	V.Gerbreders, J.Teteris,	
	A.Bulanovs	
P3	A.Svilans, V.Kashcheyevs	MODELING THE CHARGING OF A PERIODICALLY
		DRIVEN QUANTUM DOT
P4	A.Vembris, S.Popova,	ELECTRICAL AND OPTICAL PROPERTIES OF GLASS
	K.Pudzs, I.Muzikante	FORMING INDAN-1,3-DIONE PYRAN DERIVATIVES
P5	K.Klismeta, J.Teteris,	OPTICAL PROPERTIES OF AZORUBINE AND GELATINE
	J.Aleksejeva	SYSTEM
P6	E.Potanina, J.Teteris	OPTICAL RECORDING IN DISPERSE RED 1 AND
		DISPERSE YELOW 7 CONTAINING ORGANIC POLYMERS
P7	V.Zaiceva, V.Bobrovs	INVESTIGATION OF SPECTRAL SLICING TECHNOLOGY
		IN WDM-PON SYSTEMS
P8	I.Diebele, A.Derjabo,	SKIN EUMELANIN AND PHEOMELANIN MAPPING
	J.Kapostinsh, J.Spigulis	USING SPECTRAL IMAGING
P9	A.Derjabo, I.Diebele,	A CASE REPORT OF MULTISPECTRAL IMAGING FOR
	J.Kapostinsh, J.Spigulis	SKIN CANCER ASSESSMENT
P10	A.Bekina, I.Diebele,	TEST OF A VIDEO-MICROSCOPE, MODIFIED FOR SKIN
	U.Rubins, J.Zaharans,	ASSESSMENT
	A.Derjabo, J.Spigulis	
P11	M.Lange, I.Saknite,	SPECTRAL IMAGING USED IN DETERMINING THE AGE
	D.Jakovels	OF BRUISES DEPENDING ON THE BILIRUBIN
		CONCENTRATION
P12	L.Asare, M.Ozols,	MULTI-SPECTRAL PHOTOPLETHYSMOGRAPHY DEVICE
	U.Rubins, O.Rubenis,	FOR WAVEFORM ANALYSIS OF VASCULAR LESIONS
	J.Spigulis	
P13	I.Ferulova, J.Lesins,	SKIN OPTICAL DENSITY CHANGES AFTER LOW POWER
	D.Jakovels, A.Lihachev,	LASER IRRADIATION
	J.Spigulis	

P14	<u>G.Sprude</u> , A.Lihachev, D.Jakovels, J.Lesins, J.Spigulis, M.Tamosiunas, S.Satkauskas, M.Venslauskas	FLUORESCENCE SPECTROSCOPY FOR MONITORING OF FLUORESCENT MARKERS DISTRIBUTION IN TISSUES
P15	<u>S.Fomins,</u> M.Ozolinsh, K.Luse	DESIGNING COLOR VISION TEST PLATE –PRINT TECHNOLOGY, CHROMATICITY, LUMINANCE AND FORM AMBIGUITY CHALLENGES
P16	A.Vicinska, S.Fomins, G.Krumina	COLOR MATCH TOLERANCES OF CHROMATIC FILTERS FOR STEREOVISION TESTING PURPOSES
P17	I.Zakutajeva, S.Fomins	DEPOSIT TYPES AND LOCALIZATION ON THE CONTACT LENSE SURFACE
P18	L.Zake, I.Lacis	MEMORY-GUIDED EYE MOVEMENTS
P19	I.Laicane, L.Filimonova,	THE PARAMETERS OF SACCADIC EYE MOVEMENTS IN
	I.Lacis	READING AND DOT SCANNING TASKS
P20	T.Pladere, I.Timrote,	ATTENTION AND WORKING CAPACITY DEPENDING ON
	G.Krumina	PERIPHERAL VISUAL STIMULI
P21	E.Caure, G.Ikaunieks,	CHANGES IN MYOPES VISUAL ACUITY
	E.Kassaliete	WITH DIFFERENT CONTRAST STIMULI

VISUAL WORD RECOGNITION IN NORMAL READING CHILDREN AND CHILDREN WITH READING DIFFICULTIES


E.Kassaliete, E.Megne, I.Lācis, S.Fomins


Department of Optometry and vision Science, University of Latvia, LV1063 Riga, Latvia evita.kassaliete@lu.lv


Introduction: About 15-20% of school-aged children have reading difficulties.[1] There are many neural processes which participate in text decoding during reading: processing rate, verbal short term memory, phonological processing and visual processing, word identification (visual word recognition), word memory (working memory) and text comprehension. [2] Study aim is to determine differences in visual word recognition for different lengths of words showed in short interval of time between normal reading children and children with reading difficulties.

Method: Fifty-two children took part in the study. Thirteen children in Grade 4 (9-10 years old) and fourteen children in Grade 3 (8-9 years old) had a reading speed less than average in class, in Grade 4 89±5.29 (wpm), in Grade 3 63 ± 3.41 (wpm). These groups will be called children with reading difficulties, others - normal reading children. The stimulus set consisted of 150 words. The length of the items varied from four to ten letters. Each word was shown on a computer for 500 ms. The answers were expected verbally and correctly and incorrectly named words were recorded. Each word length was shown 15 times. Letter size corresponded to 6 cycles / degree. Duration of the test was ~ 3.5 min. Word samples for this research was selected with help of a speech therapist.

Results: Data of correctly named words for children with reading difficulties and without them were compared with t-Test: Two-Sample Assuming Unequal Variances. There was a significant difference between results of both groups for all word length. In Grade 4 - four letters long words decoding F(1.77)=2.63, p<0.02; ten letters words decoding F(1.75)=5.04, p<0.00015, but in Grade 3 – four letters word decoding F(1.73)=2.94, p<0.009; ten letters decoding F(1.8)=4.44, p<0.001.

Image 2. *Grade 4* (line with diamond the mean values in normal reading children, line with square - children with reading difficulties)

Conclusion: The study confirms that children with reduced reading speed can decode words shorter than normal reading children. These children have different reading pattern –

nonlexcal route, the graphemes of a word are decoded into phonemes one- by-one, in serial way, and - lexcal rout, letters are activated in parallel, and these letters activate a words entry in the orthographic lexicon. Another model works with global and local visual attention. In our study we can't distinguish these patterns. [3]

References

- 1. Sarmīte Tūbele, Anna Kopeloviča, "Jaunāko klašu skolēnu runas un valodas traucējumu noteikšana un korekcijas iespējas" *Promocijas darbs speciālajā pedagoģijā*, lpp. 146.(2006).
- 2. http://brainconnection.positscience.com/topics/?main=gal/text-comprehension
- 3. Vanessa E.G. Martens, Peter F. De Jong, "The effect of word length on lexical decision in dyslexic and normal reading children"; *Brain and Language*, 98, p.140.-149., (2006).

DEVELOPMENT OF A METHOD TO EVALUATE PERIPHERAL VISUAL PERCEPTION

Ieva Timrote, Gunta Krumina, Tatjana Pladere, Mara Skribe

University of Latvia, Department of Optometry and Vision Science, LV 1063 Riga, Latvia Ieva.Timrote@inbox.lv

Visual information is organized and combined with memory and other senses in the visual cortex, hence making our visual perception [1]. It is within the cortex that visual information travels in two independent pathways – temporal or "what" system and parietal or "where" system. It is thought that temporal pathway receives the main input from *parvo* (P) pathway, and parietal – from *magno* (M) pathway [1]. P pathway consists of *midget* cells whose properties let us see objects in detail in central visual field, whereas M pathway consists of *parasol* cells whose properties let us see things in motion in peripheral visual field [2, 3]. We wanted to develop a method that would lead to evaluation of peripheral visual perception properties. For this reason individuals had to perform visual search task with additional noise in central and peripheral visual field.

An individual had to sit 60 cm from a projection screen and memorize the first letter from the upper left row. Afterwards he had to count all the letters he could find in a letter grid consisting from fifteen letters in fifteen rows. This task had to be performed several times while letters could be seen on a blank background, on lines or in squares. Peripheral noise could be white background, white background with ten times ten or five times five black dots.

It is known that accuracy and working capability is characterized by attention and power of concentration. Therefore we tested attention by comparing actual number of letters to count with ones that were counted by an individual. The results demonstrated that here are no obvious errors for counting the letters that would correlate with central noise or peripheral noise.

Time that an individual needed to accomplish the task was used to evaluate concentration (attention that is directed towards an object or placement proceeds processing [4]). As demonstrated from the results, all the individuals could be divided in two groups. For one group of individuals peripheral noise essentially influenced the time needed to accomplish the central task. For another group central noise had an essential influence on peripheral noise. Looking at the time needed to accomplish the task, we saw that an individual could count all the letters faster when looking at blank central noise and slower when counting letters in squares. Individuals accomplished their task faster if there was peripheral noise.

Acknowledgement

This work has been supported by the European Social Fund within the project «Support for Doctoral Studies at University of Latvia».

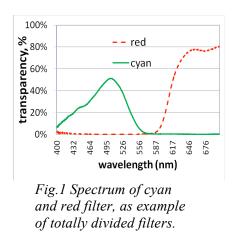
Thanks to S.Fomins for the help with the program.

References

- 1. Schwartz, S. H., *Visual Perception: a Clinical Orientation. 2nd Edition.* Stamford Connecticut: Appleton & Lange, 1999. pp. 303-306
- 2. Kaplan, E., *The M, P, and K Pathways of the Primate Visual System*. In: *The Visual Neurosciences*. Vol.2 Chapter 30. *Overview*, pp. 481-493
- 3. Stein J., The Magnocellular Theory of Developmental Dyslexia. Dyslexia 7, 2001. pp.12-36

4

4. Wolfe J., *Visual attention*. In: De Valois KK, editor. Seeing. 2nd ed. San Diego, CA:Academic Press; 2000. pp. 335-386


COLOR MATCH TOLERANCES OF CHROMATIC FILTERS FOR STEREOVISION TESTING PURPOSES

Agnese Vicinska¹, Sergejs Fomins², Gunta Krūmiņa¹

¹Optometry and Vision Science Department, University of Latvia, LV 1063 Riga, Latvia ²Institute of Solid State Physics, University of Latvia, LV 1063 Riga, Latvia agnesevicinska@inbox.lv

Stereovision is an ability of fusion of two images (of each eye) into one percept which

result in enhanced depth perception. Nowadays this skill is widely used in visual activities like binocular microscopy and 3D media. There is a variety of methods to divide the signals of each eye and to produce a stereoscopic sensation. Hereby, our interest is in splitting technique, which deals with two spectral filters. Color sensation can differ in population and it is important to quickly and efficiently fix the color filter pairs so they be used can in stereo tests and binocular balance tests. We try to introduce a methodology for easy and guided characterization of filters and stimuli color for different projection devices (CRT, LCD, OLED).

Ten pairs of commercially available gel filters were chosen for experiment. Filter combinations comprised yellow and red against the blue and green filters. Matching experiment started with each eye individually. Subject's task is to match the chromatic value of test stimuli on the grey backgrounds until one disappears. Three brightness levels were chosen for match procedures. When the match is found the subject is asked to find the minimum and maximum values of the match range.

Results show that filters with completely divided spectra (fig.1) produce more narrow color tolerances then mixed spectra filters. Match procedure depend on spectral composition of projection device and in many cases all primaries (R, G, B) should be engaged to completely vanish the stimuli. Our aim is to find the unique filter pair for many devices, when match procedure is done using minimal set of primaries.

References

- 1. D.Regan. *Vision and visual dysfunction. Binocular Vision*. Ed.: J.R.Cronley-Dillon. MacMillan Press, Lomdon, 1991.
- S.E.Palmer. Visions Science. Photons to Phenomenology. A Bradford Book, MIT Press, Cambridge, London, 1999.

MEMORY-GUIDED EYE MOVEMENTS

Līga Zaķe, Ivars Lācis University of Latvia Optometry and Vision Science, Rīga, Latvija

Smooth pursuit eye movements are conjugate and serves to stabilize gaze on a moving object in the area of fovea. Thus the velocity of retinal image, which moves together with object, is near zero, but the angular velocity of eye movement is equal as velocity of stimulus movement.

Smooth pursuit eye movements have been observed two phenomena - prescribing and continuing, if the stimulus abruptly gets lost. Then short-term memory guides eye movements with saccadic eye movements. /1/ Fukushima, et al., /2/ research results show longer anti-saccade latencies for children with learning disorders by the side of others. Therefore we decided to try experimentally, if memory-guided tasks affect smooth pursuit eye movement parameters.

In our experiments is a foursquare (size $0,6^{\circ}$), which horizontally goes across the computer screen from left side. Distance between the screen and eye is 60 cm. The velocity is changed within 5°/s and 10°/s. In the middle of the screen is a not transparent mask 5° or 10° wide. The task is to fix a gaze to square and follow, while it goes across the screen. When the square disappears behind the mask, pacient imagines the motion and continue to follow. After the mask pacient tries to catch again the square and follows after it till the edge of the screen. Meanwhile gaze position is recorded.

In all experiments (by different combinations of mask width and stimulus velocity) we observed an inertia of pursuit, which reaches even 2° . During inertia gaze velocity becomes lower, e.g., if the stimulus velocity up to mask is $4,9^{\circ}$ /s, then it's $2,3^{\circ}$ /s when the stimulus disappears. On average after 600 ms the first saccade is observed. The number of saccades and their amplitudes are depend on stimulus velocity before the mask, mask width and presence of other factors, e.g., additional tasks or distractors. Frequently behind the mask is observed a delay of smooth pursuit (approximately 200 ms) and overtaking in the end of mask. 500 ms later, when stimulus is visible, this is corrected with a small saccade.

Comparing the parameters of eye movements (such as inertial velocity decreasing, the character of saccades, gaze precision by prediction for sight again stimulus), when eye crosses the mask, there is a difference between students in various ages.

We offer a model of short-term memory testing for students, which gives an analysis of smooth pursuit eye movement parameters before and after the mask on the screen.

References

- 1. **Jonikaitis, D., Deubel, H., de'Sperati, C.** Time gaps in mental imagery introduced by competing saccadic tasks. *Vision Research.* 2009, 49, 2164.-2175.
- 2. **Fukushima, J., Tanaka, S., Williams, J.D., Fukushima, K.** Voluntary control of saccadic and smoothpursuit eye movements ir children with learning disorders. *Brain & Development*. 2005, Nr.27, 579.-588.

THE PARAMETERS OF SACCADIC EYE MOVEMENTS IN READING AND DOT SCANNING TASKS

I.Laicane, L.Filimonova, I.Lacis

Department of Optometry and Vision science, University of Latvia, LV 1063 Riga, Latvia

Saccades are rapid voluntary eye movements that transfer gaze from one fixation point to another, however often they are generated involuntary and automatically. [1] Cognitive processes can also influence the gaze transfer, e.g. during reading or making a regular saccade sequence. Study of both the visual attention models and psychology of reading shows that the reading process can also be performed automatically.[2, 3] The aim of the study is to determine, whether reading in Latvian with statistic significance can be described as an automatic process and to determine whether the average gaze transferring data of one person change during repeated tasks. Knowing, that when reading in Latvian , the saccades are on average 6-8 symbols or approximately 2° long, we decided to compare gaze parameters in reading with that in scanning of dots that are organized in rows with the distance of 2° between them.

The text of reading task was artificially constructed of words that all were 6-8 symbols long and hence located approximately 2° from each other. The dots on a plate of the scanning task were 0.5° big and were organized in 10 rows. In order to analyze only the successive saccades, the regressions and the saccades to the next row were removed from the data. The histogram interval for the distribution of the amplitudes was determined by the Sturge's rule. The data were processed by BeGaze and Microsoft Excel c programs and analyzed with the statistical methods. The dispersions of the saccade amplitudes were compared using Fisher's test and the average amplitude values were compared using t-test. The distribution of the saccade amplitudes of the reading and dot scanning tasks were compared individually for every participant of the experiment.

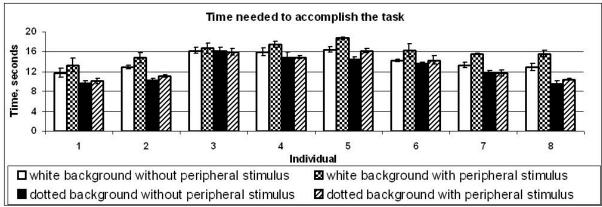
The differences of dispersions of the amplitude distributions during repeated reading were statistically significant in a half of tests. However the average gaze amplitudes confirm the automaticity of the reading process: less than 15% of the tests showed statistically significant differences between the average amplitudes. The results also show that for 80% of participants of the experiment the distribution of the saccade amplitudes in reading is similar to the distribution in the dots scanning task. The differences between the mean saccadic amplitudes in both tasks varied from 0 to 0.5° . And the results of t-test assuming equal variances showed that the differences between the mean values of amplitudes were not statistically significant. Null hypothesis was that the average amplitudes were equal. P value varied from 0.28 to 0.96 that means that the data appear to be consistent with the null hypothesis. Neither the reading nor the dot scanning tests show saccades with predictable average amplitude and a small standard deviation. This allows us conclude, that in a task, where it is necessary to make successive horizontal saccades, the brain perceives it as a reading task and transfers gaze automatically and similarly to reading.

References

1. John M. Findlay, Robin Walker, A model of saccade generation based on parallel processing and competitive inhibition, Behavioral and Brain Sciences, 1999, 22, 661–721

- 2. Keith Rayner, *Eye movements in reading and Information Processing: 20 Years of Research*, Psychological Bulletin, 1998, Vol. 124, No. 3, 372-422.
- 3. Timothy L. Hodgson, Ben A. Parris, Nicola J. Gregory, Tracey Jarvis, The saccadic Stroop effect: Evidence for involuntary programming of eye movements by linguistic cues, Vision Research, 2009,49, 569–574

ATTENTION AND WORKING CAPACITY DEPENDING ON PERIPHERAL VISUAL STIMULI


<u>Tatjana Pladere</u>, Ieva Timrote, Gunta Krumina University of Latvia, Department of Optometry and Vision Science, LV 1063 Riga, Latvia tmbox@inbox.lv

In everyday life each visual stimulus is generally surrounded by a lot of other stimuli – distracting items. The visual system has limited capacity and cannot process everything that falls onto retina [1]. Physiological characteristics of visual system and visual attention save the brain from an overdose of information [1, 2].

In order to study peripheral visual perception, we developed a programme with a type of visual search task. For a stationary central stimulus there was a chosen set consisting from black Latin letters (10x10). The main task for each individual was to count how many times a certain letter was repeated within each set of letters. The task was performed at four different conditions: white background without peripheral stimuli, white background with peripheral stimuli, dotted (100 randomly located points) background without peripheral stimuli and dotted background with peripheral stimuli. For each of conditions ten measurements were carried out. After each of the sets an individual had an additional task – to report whether he had noticed a peripheral stimulus and to describe it.

The first results showed that, subjectively, the central task is completed faster on the dotted background comparing with the white background – the individual was aware of increasing complexity of the task and was more focused on it. However, there was a statistically significant difference only for one of the individuals.

Peripheral stimulus significantly increased the time to complete the task on white background. In turn, it did not attract attention so pronounced when completing the task on the dotted background therefore not increasing the time to complete the task. (See Fig.1).

Fig.1. The dependence of the time needed to accomplish the task of the type of background around it and of peripheral stimuli

Analyzing the results of the additional task there was identified that three of the eight individuals had not noticed a peripheral stimulus in any of the conditions of the central task performance. Focusing on the task performance allowed them to "switch off" the peripheral vision.

References

- 1. Chun, M. M., Wolfe, J. M. Blackwell Hadbook of Perception. *Visual Attention*. Editor: E.B.Goldstein. Version of July 7, 2000. p.3-8, 17.
- 2. H. Ambler, B. A, Flinklea, D. L. The influence of selective attention in peripheral and foveal vision. *Perception and Psychophysics*, 1976, Vol.19 (6), p.518-524.

CHANGES IN MYOPES VISUAL ACUITY WITH DIFFERENT CONTRAST STIMULI

Elīna Čaure, Gatis Ikaunieks, Evita Kassaliete

Department of Optometry and Vision Science, University of Latvia, LV 1063 Riga, Latvia elina.caure@gmail.com

Introduction. For young emmetropes visual acuity usually is better with negative Weber contrast NWC (black letters on white background) than with positive contrast PWC (white letters on black background) stimuli. Some authors showed that in case of myopia visual acuity is better with the positive than with negative contrast optotypes. One of explanations of this difference between myopes and emmetropes is that myopes have neurological changes in ON and OFF pathways of the visual system [1]. However it is well known that in case of increased light scattering level in the eye symbols with PWC are resolved better than with NWC, because bright background increases straylight level in the eye more than dark background. Some studies showed that increased axial length of the eye increases retinal straylight [2]. From this can be concluded that myopes have larger retinal straylight than emmetropes, so it cannot be excluded that myopes have better visual acuity with positive contrast also due to optical factors of the eye. Additional source of retinal straylight for myopes is corrective spectacle or contact lenses. In our research we wanted to find out how optical correction influences myopes visual acuity with positive and negative contrast stimuli.

Method. 17 persons (11 myopes and 6 emmetropes) at the age from 20 to 22 participated in this research. The spherical equivalent refractive error of the myopic subjects ranged from -2.5 to -6.75 D. Monocular visual acuity (VA) with PWC (97%), NWC (-97%) and low contrast (-10%) Landolt optotypes was determined using FrACT computer program. Measurements for myopes were done using spectacle or contact lenses correction.

Results. As was expected, the worst visual acuity was found with the low contrast optotypes. For myopes these values were lower than for emmetropes, but for myopes visual acuity obtained with high contrast stimuli also were lower, so we can't conclude that myopes have worse contrast sensitivity than emmetropes.

For emmetropes visual acuity with positive and negative contrast was not significantly different, while for myopes visual acuity was better with PWC than with NWC stimuli. A greater difference between these values for myopes was in measurements done with spectacles. These results are in accordance with other researches which showed that spectacle lenses increase retinal straylight more than contact lenses.

Conclusions. Better visual acuity for myopes with positive than negative contrast stimuli is related not only with neurological, but also with optical factors.

References

- 1. B.D.Stoimenova. Investigative Ophthalmology & Visual Science, 2007, Vol.48, No.5, 2371-4
- 2. J.J. Rozema, T.J.T.P. Van den Berg, M.J. Tassignon. Investigative Ophthalmology & Visual Science, 2010, Vol.51, No.5, 2795-9

