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We study the following equation

+∞∑
|k|=0

ak(x)u(x+ αk) = v(x), x, αk ∈ D,∀k, (1)

where D is a convex cone in Rm, k is a multi-index. There are many different situations related
to the fact when x may be a continual or a discrete variable. For a continual variable x ∈ D the
function

σ(x, ξ) =

+∞∑
|k|=0

ak(x)eiαk·ξ, ξ ∈ Rm, (2)

is called a symbol of the equation (1) if the series (2) converges ∀x ∈ D, ξ ∈ Rm. We say
that a symbol is called elliptic if it is non-vanishing for all possible x, ξ. We assume here that
σ(x, ξ) ∈ C(Ṙm × Ṙm) (it is possible for example if ak(x) are continuos functions with compact
supports, and the sum in (2) is finite).

Lemma 1. If D = Rm and the symbol (2) does not vanish then the equation (1) has a Fredholm
property in the space L2(Rm).

If D = Rm
+ ≡ {x ∈ Rm : xm > 0}, then an ellipticity of the symbol σ(x, ξ) is not enough.

Theorem 2. Let D = Rm
+ . The equation (1) has a Fredholm property in the space L2(Rm

+ ) iff the
symbol σ(x, ξ′, ξm), ξ = (ξ′, ξm), is elliptic and∫ +∞

−∞
d arg σ(·, ·, ξm) = 0.

For discrete equations similar results were described in [1; 2] using methods developed in [3].
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