Abstracts of MMA2015, May 26–29, 2015, Sigulda, Latvia © 2015

JOINT MIXED LIMIT THEOREM FOR A CLASS OF ZETA-FUNCTIONS

ROMA KAČINSKAITĖ¹ AND KOHJI MATSUMOTO²

¹Department of Mathematics, Šiauliai University P. Višinskio 19, LT-77156 Šiauliai, Lithuania E-mail: r.kacinskaite@fm.su.lt

² Graduate School of Mathematics, Nagoya University Chikusa-ku, Nagoya 464-8602, Japan E-mail: kohjimat@math.nagoya-u.ac.jp

For $m \in \mathbb{N}$, attach $g(m) \in \mathbb{N}$, and, for $j \in \mathbb{N}$ with $1 \leq j \leq g(m)$, let $f(j,m) \in \mathbb{N}$ and $a_m^{(j)} \in \mathbb{C}$. Denote by p_m the *m*th prime number, and let $s = \sigma + it$ be a complex variable. The zeta-function $\varphi(s)$ introduced by the second author [2] is defined by the polynomial Euler product

$$\varphi(s) = \prod_{m=1}^{\infty} A_m^{-1}(p_m^{-s}), \tag{1}$$

where A_m 's are polynomials given by $A_m(x) = \prod_{j=1}^{g(m)} (1 - a_m^{(j)} x^{f(j,m)})$. Suppose that $g(m) \leq c p_m^{\alpha}$, $|a_m^{(j)}| \leq p_m^{\beta}$ with c > 0, and some non-negative constants α and β . The infinite product (1) converges absolutely for $\sigma > \alpha + \beta + 1$.

Let $\mathfrak{B} = \{b_m : m \in \mathbb{N} \cup \{0\}\}\$ be a periodic sequence of complex numbers with minimal period $l \in \mathbb{N}$, and let $\gamma \in \mathbb{R}$, $0 < \gamma \leq 1$, be a fixed parameter. Then the function $\zeta(s, \gamma; \mathfrak{B})$ introduced by A. Laurinčikas and A. Javtokas [1] is defined, for $\sigma > 1$, by the series

$$\zeta(s,\gamma;\mathfrak{B}) = \sum_{m=0}^{\infty} \frac{b_m}{(m+\gamma)^s}.$$

From the periodicity of \mathfrak{B} we have $\zeta(s,\gamma;\mathfrak{B}) = \frac{1}{l^s} \sum_{k=0}^{l-1} b_k \zeta(s,(k+\gamma)/l), \sigma > 1$, where $\zeta(s,\gamma)$ is the classical Hurwitz zeta-function. Therefore, the function $\zeta(s,\gamma;\mathfrak{B})$ is a linear combination of the functions $\zeta(s,\gamma)$, and last equality gives analytic continuation for $\zeta(s,\gamma;\mathfrak{B})$ to the whole complex plane, where it is regular, except, maybe, for a simple pole at s = 1 with residue $b := \frac{1}{l} \sum_{k=0}^{l-1} b_k$.

In the talk, we will discuss on joint mixed limit theorem in the space of holomorphic functions for the collection of functions $\varphi(s)$ and $\zeta(s, \gamma; \mathfrak{B})$, when special additional conditions are fulfilled.

The first author is partially supported by the European Commission within the 7FP 2011-2015 project INstitutional Transformation for Effecting Gender Equality in Research, Grant Agreement No. 266638.

REFERENCES

- [1] A. Javtokas and A. Laurinčikas. On the periodic Hurwitz zeta-function. Hardy-Ramanujan J., 29:18-36, 2006.
- [2] K. Matsumoto. Value-distribution of zeta-functions. In: "Analytic Number Theory", Proc. Japanese-French Sympos., Tokyo, 1989, K. Nagasaka and E. Fouvry (Eds.), Lecture Notes in Math. 1434, Springer, 1990, 178–187.