AN ALTERNATIVE APPROACH TO LOWER AND UPPER APPROXIMATION OPERATORS

ALEKSANDRS ELKINS1 AND ALEKSANDRS ŠOSTAK2

1 Department of Mathematics, University Of Latvia
Zelīļu iela 8, Rīga LV-1002, Latvija
2 Institute of Mathematics and CS
Raiņa bulv. 29, Rīga LV-1459, Latvija
E-mail: aleksandrs.elkinsi@gmail.com, aleksandrs.sostaks@lumii.lv

Let R be a reflexive transitive relation on a set X, and A be an L-subset of X, that is a mapping $A : X \rightarrow L$ where $L = (L, \leq, \land, \lor, *, \mapsto)$ is a cl-monoid [1]. Following the works of many authors (see e.g. [2], [3], [4]) by a lower and upper approximations of an L-set A we call respectively

$$l(A)(x) = \inf_{x' \in X} (R(x, x') \mapsto A(x')) \forall A \in LX,$$

$$u(A)(x) = \sup_{x' \in X} (R(x, x') \ast A(x')) \forall A \in LX.$$

An important property of this approximation is that $l(A(x)) \leq A(x) \leq u(A(x)) \forall A \in LX$. In case L is an MV-algebra [5], residuation \mapsto satisfies a double negation property $(a \mapsto 0) \mapsto 0 = a \forall a \in L$ and hence $a \mapsto 0$ could be viewed as a complement of element a [5]. This allows to get a ”good” relation between lower and upper approximation operators: $l(A(x)) \mapsto 0 = u(A \mapsto 0)(x)$. This property has a clear counterpart in case of topology, where l and u approximation operators could be realized as interior and closure operators respectively. This inspires us to define now operators lu and ul starting with l and u and setting

$$lu(A)(x) = (u(A \mapsto 0)(x)) \mapsto 0,$$

$$ul(A)(x) = (l(A \mapsto 0)(x)) \mapsto 0,$$

which we view as alternative approaches of lower and upper approximations. In case of MV-algebra they obviously coincide with l and u respectively.

We study properties of operators lu and ul, and their relations with ”classical” operators l and u. In particularly we show that the inequalities $l \leq lu$ and $u \leq ul$ are always true.

Acknowledgement The second named author kindly announces the support of the ESF project 2013/0024/1DP/1.1.1.2.0/13/APIA/VIAA/045

REFERENCES