SOME ALGEBRAIC STRUCTURES RELATED TO ND-AUTOMATA

Jānis Cīrulis
University of Latvia
email: jc@lanet.lv

Joint Estonian-Latvian Theory Days
Medzābaki, September 27–30, 2012
OVERVIEW

0. QUANTUM LOGICS AND AUTOMATON LOGICS
1. ND-AUTOMATA
2. LOGIC OF AN AUTOMATON
3. STATES AND OBSERVABLES ON A LOGIC
Early history
Early history

Early history

Early history

Early history

J.Cirulis, *Algebraic structures related with the logic of a discrete black box* (in preparation).
1. ND-AUTOMATA
1. ND-AUTOMATA

Definition

By a (non-deterministic) automaton we mean a quintuple \(A := (X, Y, Z, \delta, \lambda) \), where

- \(X \) is the set of inputs,
- \(Y \) is the set of outputs,
- \(Z \) is the set of states,
- \(\delta \) is the next-state function \(X \times Z \to \mathcal{P}_0(Z) \),
- \(\lambda \) is the output function \(X \times Z \to \mathcal{P}_0(Y) \),

all without any finiteness assumptions.

(\(\mathcal{P}_0(M) \) stands for the set of non-empty subsets of \(M \))
1. ND-AUTOMATA

Definition

By a (non-deterministic) automaton we mean a quintuple $A := (X, Y, Z, \delta, \lambda)$, where

- X is the set of inputs,
- Y is the set of outputs,
- Z is the set of states,
- δ is the next-state function $X \times Z \to \mathcal{P}_0(Z)$,
- λ is the output function $X \times Z \to \mathcal{P}_0(Y),$

all without any finiteness assumptions.

($\mathcal{P}_0(M)$ stands for the set of non-empty subsets of M)

We keep sets X and Y fixed.
Some notation

- $X^* := \bigcup(X^n: n \geq 0)$ is the set of all input strings,
- $Y^* := \bigcup(Y^n: n \geq 0)$ is the set of all output strings,
- ϵ is the empty string,
- $|\alpha|$ is the length of a string $\alpha \in X^* \cup Y^*$,
- $\alpha \sqsubseteq \beta$: the string α is an initial segment of β.
- $\alpha \sqcap \beta$: the greatest common initial segment of α and β.
- $Y_\alpha := Y_{|\alpha|}$ for $\alpha \in X^*$.

If $\alpha, \beta \in X^*$, $|\alpha| \leq |\beta|$ and $L \subseteq Y_\beta$, then
- the restriction of L to $|\alpha|$ is
 $$L_{|\alpha|} := \{\gamma \in Y_\alpha: \gamma \sqsubseteq \delta \text{ for some } \delta \in K\}.$$
ND-operators and generalized states

A (sequential) **ND-operator** is a mapping \(f: X^* \rightarrow \mathcal{P}(Y^*) \) such that

- if \(\alpha \in X^* \), then \(f(\alpha) \subseteq Y_\alpha \),
- if \(\alpha \sqsubseteq \beta \in X^* \), then \(f(\alpha) = f(\beta)|_{\alpha} \).
A (sequential) \textit{ND-operator} is a mapping $f: X^* \rightarrow \mathcal{P}(Y^*)$ such that
\begin{itemize}
 \item if $\alpha \in X^*$, then $f(\alpha) \subseteq Y_{\alpha}$,
 \item if $\alpha \sqsubseteq \beta \in X^*$, then $f(\alpha) = f(\beta)|_{\alpha}$.
\end{itemize}

ND operators, if considered as sets of ordered pairs, are ordered by inclusion:
\[f \subseteq g \text{ iff } f(\alpha) \subseteq g(\alpha) \text{ for all } \alpha \in X^*. \]
ND-operators and generalized states

A (sequential) ND-operator is a mapping $f: X^* \rightarrow \mathcal{P}(Y^*)$ such that
- if $\alpha \in X^*$, then $f(\alpha) \subseteq Y_\alpha$,
- if $\alpha \sqsubseteq \beta \in X^*$, then $f(\alpha) = f(\beta)|_{\alpha}$.

ND operators, if considered as sets of ordered pairs, are ordered by inclusion:
$$f \subseteq g \text{ iff } f(\alpha) \subseteq g(\alpha) \text{ for all } \alpha \in X^*.$$

We can associate with any ND-automaton A an ND-operator T as follows: for every $\alpha \in X^*$,
$$T(\alpha) := \text{the set of all possible responses to } \alpha.$$
More generally, every macrostate \(Z_0 \subseteq Z \) induces an ND-operator \(T_{Z_0} \) as follows:

\[
(y_1y_2 \cdots y_n) \in T_{Z_0}(x_1x_2 \cdots x_m) \text{ iff } \begin{align*}
n &= m \\
y_i &\in \lambda(x_i, z_i) \text{ with } z_1 \in Z_0 \text{ and } z_{i+1} \in \delta(x_i, z_i).
\end{align*}
\]

In particular, \(T_Z = T \), and \(T_\emptyset = \emptyset \).
More generally, every *macrostate* \(Z_0 \subseteq Z \) induces an ND-operator \(T_{Z_0} \) as follows:

\[
(y_1 y_2 \cdots y_n) \in T_{Z_0}(x_1 x_2 \cdots x_m) \text{ iff } n = m \text{ and } y_i \in \lambda(x_i, z_i) \text{ with } z_1 \in Z_0 \text{ and } z_{i+1} \in \delta(x_i, z_i).
\]

In particular, \(T_Z = T \), and \(T_\emptyset = \emptyset \).

By a *generalized state* of \(A \) we mean any ND-operator \(f \) such that \(f \subseteq T \).
More generally, every macrostate $Z_0 \subseteq Z$ induces an ND-operator T_{Z_0} as follows:

\[
(y_1 y_2 \cdots y_n) \in T_{Z_0}(x_1 x_2 \cdots x_m) \text{ iff } n = m \text{ and } y_i \in \lambda(x_i, z_i) \text{ with } z_1 \in Z_0 \text{ and } z_{i+1} \in \delta(x_i, z_i).
\]

In particular, $T_Z = T$, and $T_\emptyset = \emptyset$.

By a generalized state of A we mean any ND-operator f such that $f \subseteq T$.

The poset of all generalized states is closed under arbitrary nonempty unions and forms a complete lattice with top T and bottom \emptyset.
Experiments and observables

A simple experiment on an automaton A consists of applying an input string to A in an arbitrary (unknown!) initial state and registering the response string produced by the automaton (the outcome).

(An adaptive experiment is determined by a partial function $Y^* \rightarrow X$.)
Experiments and observables

A *simple experiment* on an automaton \(A \) consists of applying an input string to \(A \) in an arbitrary (unknown!) initial state and registering the response string produced by the automaton (the *outcome*).

(An *adaptive* experiment is determined by a partial function \(Y^* \to X \).)

We identify a simple experiment with the corresponding input string.
Experiments and observables

A *simple experiment* on an automaton A consists of applying an input string to A in an arbitrary (unknown!) initial state and registering the response string produced by the automaton (the *outcome*). (An *adaptive* experiment is determined by a partial function $Y^* \to X$.)

We identify a simple experiment with the corresponding input string.

An *observable of A associated with an experiment* α is any function ϕ whose domain is $T(\alpha)$. The observable is measured first fulfilling the experiment α and then calculating the value of ϕ on the registered outcome.
2. LOGIC OF AN ND-AUTOMATON
2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.
2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.

Statements

An (experimental) *statement about* A is a pair (α, K) with $\alpha \in X^*$ and $K \subseteq T(\alpha)$ interpreted as an assertion `the outcome of α lies in K`.
2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.

Statements

An *(experimental) statement about A* is a pair (α, K) with $\alpha \in X^*$ and $K \subseteq T(\alpha)$ interpreted as an assertion

\[
\text{the outcome of } \alpha \text{ lies in } K.
\]

(α, K) is true in state $z : T_z(\alpha) \subseteq K$.

(α, K) is false in state $z : K \cap T_z(\alpha) = \emptyset$.

(α, K) is true of A if it is true in all states z.

(α, K) is possible in A if it is true in some state z.
2. LOGIC OF AN ND-AUTOMATON

Let A be some fixed ND-automaton.

Statements

An (experimental) *statement about A* is a pair (α, K) with $\alpha \in X^*$ and $K \subseteq T(\alpha)$ interpreted as an assertion

\[
\text{the outcome of } \alpha \text{ lies in } K.
\]

(α, K) is true in state $z : T_z(\alpha) \subseteq K$.

(α, K) is false in state $z : K \cap T_z(\alpha) = \emptyset$.

(α, K) is true of A if it is true in all states z.

(α, K) is possible in A if it is true in some state z.

Let E stand for the set of all statements.
Entailment

\((\alpha, K) \textit{ entails } (\beta, L)\) (in symbols, \((\alpha, K) \preceq (\beta, L)):\)

- **informally:**
 any possible outcome of \(\beta\) compatible with the proviso that the statement \((\alpha, K)\) is true must belong to \(L\)

- **formally:**
 for all \(\delta \in T(\beta)\), if \(\delta|_{(\alpha \cap \beta)} \in K|_{(\alpha \cap \beta)}\), then \(\delta \in L\).
Entailment

(\alpha, K) \textit{ entails} (\beta, L) (in symbols, (\alpha, K) \preceq (\beta, L)):

informally:
any possible outcome of \beta compatible with the proviso that the statement
(\alpha, K) is true must belong to \(L\)

formally:
for all \(\delta \in T(\beta)\), if \(\delta| (\alpha \cap \beta) \in K| (\alpha \cap \beta)\), then \(\delta \in L\).

Proposition

The relation \(\preceq\) is a preorder on \(E\),

(\alpha, K) \preceq (\alpha, L) \iff K \subseteq L,

(\alpha, \emptyset) \preceq (\beta, L),

(\alpha, K) \preceq (\beta, T(\beta)),

if (\alpha, K) \preceq (\beta, L), then (\beta, -L) \preceq (\alpha, -K).
Equivalent statements

In the classical propositional logic equivalent formulas present the same proposition, and all propositions form a Boolean algebra.
Equivalent statements

In the classical propositional logic equivalent formulas present the same proposition, and all propositions form a Boolean algebra.

\[(\alpha, K) \text{ and } (\beta, L) \text{ are } \text{equivalent} \text{ (in symbols, } (\alpha, K) \simeq (\beta, L)\text{)} \]
if they entail each other:

\[(\alpha, K) \preceq (\beta, L) \text{ and } (\beta, L) \preceq (\alpha, K).\]
Equivalent statements

In the classical propositional logic equivalent formulas present the same proposition, and all propositions form a Boolean algebra.

\[(\alpha, K) \text{ and } (\beta, L) \text{ are equivalent (in symbols, } (\alpha, K) \simeq (\beta, L)) \text{ if they entail each other:}\]
\[(\alpha, K) \preceq (\beta, L) \text{ and } (\beta, L) \preceq (\alpha, K).\]

The equivalence classes \([(\alpha, K)]\) of \(\simeq\) are considered as experimental \textit{propositions} about \(A\).
The logic

The logic of \(\mathbf{A}\) is defined to be the set \(L := E/\sim\) of all propositions. The preorder \(\preceq\) induces, in a standard way, an order relation \(\leq\) on \(L\):

\[
[(\alpha, K)] \leq [(\beta, L)] \iff (\alpha, K) \preceq (\beta, L).
\]
The logic

The logic of A is defined to be the set $L := E/\sim$ of all propositions. The preorder \preceq induces, in a standard way, an order relation \leq on L:

$$[(\alpha, K)] \leq [(\beta, L)] \text{ iff } (\alpha, K) \preceq (\beta, L).$$

We may consider the logic as an algebraic system $(L, \leq, \perp, 0, 1)$, where the elements $0, 1$ of L and an operation \perp on L are defined as follows:

$$0 := [(\alpha, \emptyset)], \quad 1 := [(\alpha, T(\alpha))], \quad [(\alpha, K)]^{\perp} := [(\alpha, -K)].$$
Proposition
The logic L is an orthoposet, i.e., for all $p, q \in L$

- $0 \leq p \leq 1$,
- $p \bot \bot = p$,
- if $p \leq q$, then $q \bot \leq p \bot$,
- $p \land p \bot = 0$ and $p \lor p \bot = 1$.
Proposition
The logic \(L \) is an orthoposet, i.e., for all \(p, q \in L \)

- \(0 \leq p \leq 1 \),
- \(p \bot \bot = p \),
- if \(p \leq q \), then \(q \bot \leq p \bot \),
- \(p \land p \bot = 0 \) and \(p \lor p \bot = 1 \).

Normally, joins and meets in \(L \) are partial operations.
Proposition

The logic L is an orthoposet, i.e., for all $p, q \in L$

- $0 \leq p \leq 1$,
- $p \bot \bot = p$,
- if $p \leq q$, then $q \bot \leq p \bot$,
- $p \land p \bot = 0$ and $p \lor p \bot = 1$.

In an orthoposet, De Morgan laws hold in the following form: if one side in the subsequent equalities is defined, then the other also is, and both are equal:

- $(p \lor q) \bot = p \bot \land q \bot$,
- $(p \land q) \bot = p \bot \lor q \bot$.

For every $\alpha \in X^*$, let

$$L_\alpha := \{[\alpha, K]: K \subseteq T(\alpha)\}$$

be the set of all propositions decidable by the experiment α.
For every $\alpha \in X^*$, let

$$L_\alpha := \{(\alpha, K) : K \subseteq T(\alpha)\}$$

be the set of all propositions decidable by the experiment α.

We say that two or more propositions are coherent if they all belong to the same component L_α.

We write $p \circ q$ to mean that p and q are coherent.

Only coherent propositions can be (experimentally) decided simultaneously.
For every $\alpha \in X^*$, let
$$L_\alpha := \{[(\alpha, K)]: K \subseteq T(\alpha)\}$$
be the set of all propositions decidable by the experiment α.

We say that two or more propositions are coherent if they all belong to the same component L_α.
We write $p \perp q$ to mean that p and q are coherent.

Only coherent propositions can be (experimentally) decided simultaneously.

Theorem

Each subset L_α contains $0, 1$ and is closed under operations \vee, \wedge, \perp. Moreover, it forms a complete atomistic Boolean sub-algebra of L.

37
3. STATES AND OBSERVABLES ON A LOGIC
3. STATES AND OBSERVABLES ON A LOGIC

Let \mathcal{L} be the logic of an ND-automaton \mathcal{A}.
Let L be the logic of an ND-automaton A.

Filters and states

A *filter* of L is a subset F such that
- $1 \in F$,
- if $p \in F$, $q \in L$ and $p \leq q$, then $q \in F$,
- if $p, q \in F$ and $p \not\circ q$, then $p \land q \in F$.

A filter F is said to be *complete* if it is closed under arbitrary coherent meets.

For example, $\{1\}$ and L itself are examples of complete filters.
Let \mathbf{L} be the logic of an ND-automaton \mathbf{A}.

Filters and states

A *filter* of \mathbf{L} is a subset F such that
- $1 \in F$,
- if $p \in F$, $q \in \mathbf{L}$ and $p \leq q$, then $q \in F$,
- if $p, q \in F$ and $p \perp q$, then $p \land q \in F$.

A filter F is said to be *complete* if it is closed under arbitrary coherent meets.

Filters of \mathbf{L} may be interpreted as truth sets in \mathbf{L}.

41
Theorem

(a) if \(f \) is a generalized state of \(A \), then the subset
\[
f^{\dagger} := \{ [(\alpha, K)] \in L : f(\alpha) \subseteq K \}
\]
is a complete filter.

(b) If \(F \) is a complete filter of \(L \), then the mapping
\[
F^{\ddagger} := \alpha \mapsto \bigcap(K : [(\alpha, K)] \in F)
\]
is a generalized state of \(A \).

(c) The transformations \(^{\dagger} \) and \(^{\ddagger} \) are mutually inverse and establish an anti-isomorphism between the lattices of generalized states and complete filters.
Theorem

(a) if f is a generalized state of A, then the subset
\[f^\dagger := \{([\alpha, K]) \in L : f(\alpha) \subseteq K \} \]
is a complete filter.

(b) If F is a complete filter of L, then the mapping
\[F^\ddagger := \alpha \mapsto \bigcap\{K : ([\alpha, K]) \in F\} \]
is a generalized state of A.

(c) The transformations \dagger and \ddagger are mutually inverse and establish an anti-isomorphism between the lattices of generalized states and complete filters.

f^\dagger is the set of propositions true in the generalized state f
F^\ddagger is a generalized state in which just propositions from F are true.
Blocks and observables

Two elements p and q of L are said to be orthogonal (in symbols, $p \perp q$), if $p \leq q^\perp$ or, equivalently, $q \leq p^\perp$.

A subset of L is orthogonal if it is empty or its elements are mutually orthogonal.

A block in L is a maximal orthogonal subset every subset of which has a join.
Blocks and observables

Two elements p and q of \mathcal{L} are said to be orthogonal (in symbols, $p \perp q$), if $p \leq q^\perp$ or, equivalently, $q \leq p^\perp$.
A subset of \mathcal{L} is orthogonal if it is empty or its elements are mutually orthogonal.

A block in \mathcal{L} is a maximal orthogonal subset every subset of which has a join.

In the rest, we assume that Y (hence, also every $T(\alpha)$) is finite, and deal only with finite maximal orthogonal subsets.
Blocks and observables

Two elements p and q of \mathcal{L} are said to be \textit{orthogonal} (in symbols, $p \perp q$), if $p \leq q^\perp$ or, equivalently, $q \leq p^\perp$.

A subset of \mathcal{L} is \textit{orthogonal} if it is empty or its elements are mutually orthogonal.

A \textit{block} in \mathcal{L} is a maximal orthogonal subset every subset of which has a join.

In the rest, we assume that Y (hence, also every $T(\alpha)$) is finite, and deal only with finite maximal orthogonal subsets.

A maximal orthogonal subset B of \mathcal{L} is a block if and only if it is coherent.
<table>
<thead>
<tr>
<th>Lemma</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) If $\alpha \in X^*$, then the set $B_\alpha := {[\alpha, \beta] : \beta \in T(\alpha)}$ is a block, and the transfer $\alpha \mapsto B_\alpha$ is injective.</td>
</tr>
<tr>
<td>(b) More generally, if Q is a partition of $T(\alpha)$, then the set ${(\alpha, K) : K \in Q}$ is a block.</td>
</tr>
<tr>
<td>(c) In particular, every observable ϕ associated with α induces a partition of $T(\alpha)$ and, hence, a block B_ϕ.</td>
</tr>
<tr>
<td>(d) Every block of \mathcal{L} arises as in (c).</td>
</tr>
</tbody>
</table>
An observable for L is a function Φ whose domain is a block.
An observable for L is a function Φ whose domain is a block. If

- ϕ is an observable associated with an experiment α,
- Q_α is the corresponding partition of $T(\alpha),$

then, setting for every $K \in Q_\alpha,$

$$\phi^\dagger\left([((\alpha, K))]\right) := \phi(\beta), \text{ where } \beta \text{ is any element of } K,$$

we obtain a function ϕ^\dagger defined elsewhere on the block $B_\phi,$ i.e., an observable for $L.$
An observable for L is a function Φ whose domain is a block.

If

- ϕ is an observable associated with an experiment α,
- Q_α is the corresponding partition of $T(\alpha)$,

then, setting for every $K \in Q_\alpha$,

$$\phi^\dagger([(\alpha, K)]) := \phi(\beta),$$

where β is any element of K,

we obtain a function ϕ^\dagger defined elsewhere on the block B_ϕ, i.e., an observable for L,

Every observable Φ for L can be obtained in this way from an appropriate (and unique) observable Φ^\dagger of A.
More formally:

Theorem

(a) If ϕ is an observable of A associated with an experiment α, then the function ϕ^\dagger on B_ϕ defined by

$$\phi^\dagger([(\alpha, K)]) := \phi(\beta) \text{ where } \beta \in K$$

is an observable for L.

(b) If Φ is an observable for L with domain $B \subseteq L_\alpha$ for some $\alpha \in X^*$, then the function Φ^\ddagger on $T(\alpha)$ defined by

$$\Phi^\ddagger(\beta) := \Phi([(\alpha, K)]) \text{ where } K \ni \beta$$

is an observable of A.

(c) The transformations \dagger and \ddagger are mutually inverse and establish a bijective correspondence between observables of A and observables for L.