Quantum Lovasz local lemma

Andris Ambainis (Latvia), Julia Kempe (Tel Aviv), Or Sattath (Hebrew U.)
Part 1

(classical) Lovasz local lemma
The setting

- “Bad” events A_1, \ldots, A_m.
- $\Pr[A_i] \leq \varepsilon$.
- When can we say that $\Pr[\text{none of } A_i] > 0$?
Obvious results

- A_i independent:
 - $\Pr[\text{not } A_i] \geq 1 - \varepsilon$.
 - $\Pr[\text{none of } A_i] \geq (1 - \varepsilon)^m > 0$.

- No assumptions about A_i:
 - $\Pr[A_i] \leq \varepsilon$.
 - $\Pr[\text{some } A_i \text{ occurs}] \leq m \cdot \varepsilon$.
 - If $m \cdot \varepsilon < 1$, then $\Pr[\text{none of } A_i] > 0$.
Limited independence

- Each A_i is independent of all but at most d other events A_j.
- [Erdős, Lovász, 1975] If $\Pr[A_i] \leq \varepsilon$ and $e(d+1) \varepsilon < 1$, then $\Pr [\text{none of } A_i] > 0$.

- **Full independence**: $m \varepsilon < 1$ enough;
- **Limited independence**: $e (d+1) \varepsilon < 1$.
Application 1: k-SAT

- **k-SAT formula F,**
 - $F = F_1 \land F_2 \land \ldots \land F_m$;
 - $F_i = y_{i,1} \lor y_{i,2} \lor \ldots \lor y_{i,k}$;
 - $y_{i,l} = x_j$ or $\neg x_j$.

- **Theorem** If each F_i has common variables with at most $d = 2^k/e - 1$ other clauses F_j, then $\exists x_1, \ldots, x_n: F(x_1, \ldots, x_n) = \text{TRUE}$.
Proof

- Pick x_i at random:

\[
\Pr[x_i = TRUE] = \Pr[x_i = FALSE] = \frac{1}{2}
\]

\[
F_i = x_1 \lor x_2 \lor \ldots \lor \neg x_k
\]

\[
\Pr[F_i = false] = \frac{1}{2^k}
\]
Proof

- "Bad events" - \(\Pr[F_i - false] = \frac{1}{2^k} \)

- \(F_i \) and \(F_j \) independent \(=\) \(F_i \) and \(F_j \) have no common variables.

- Each \(F_i \) has common variables with at most \(d = \frac{2^k}{e-1} \) other \(F_j \).

\[e(d+1) \frac{1}{2^k} < 1 \]

Lovasz local lemma applies
Application 2: Ramsey graphs

- Complete graph K_n.
- Colour edges in two colours so that no K_k has all edges in one colour.
Solution

- Colour edges randomly.
- Events A_i – a fixed k-vertex subgraph has all edges in the same colour.
- Independent for subgraphs with no common edges.
Result

- **Theorem** If \(m \leq \frac{\sqrt{2}}{e} k 2^{k/2} \), then edges of \(K_m \) can be coloured with two colours so that there is no \(k \) vertices with all edges among them in one colour.
Other applications

- Coverings of \mathbb{R}^3 by unit balls;
- Linear arboricity (partitioning edges of a graph into linear forests).
Quantum Lovasz lemma
Events \iff subspaces

- Finite-dimensional Hilbert space H.
- Events $A_i \iff$ “bad subspaces” S_i.
- Event does not occur \iff a state $|\Psi\rangle$ is orthogonal to S_i.
- Goal: a state $|\Psi\rangle$, $|\Psi\rangle \perp S_i$ for all i.
Hamiltonian version

- Hamiltonian $H = \sum_i P_i$.
- Terms $H_i \Leftrightarrow$ subspaces S_i.
- $H_i |\Psi\rangle = 0 \Leftrightarrow |\Psi\rangle \perp S_i$.
- Is there a state $|\Psi\rangle$ with $H |\Psi\rangle = 0$?
Probability \Leftrightarrow dimension

- **Relative dimension**

$$d(H_i) = \frac{\dim H_i}{\dim H}$$

- $\Pr [A_i] \leq \varepsilon \Leftrightarrow d(H_i) \leq \varepsilon.$

When are two subspaces independent?
Independence: definition #1

- Bipartite system $H_A \otimes H_B$.
- Subspaces $H_1 \otimes H_B$ and $H_A \otimes H_2$ are independent.
Definition #2

- Classically, A_1, A_2 independent if
 \[\Pr[A_1 \land A_2] = \Pr[A_1] \Pr[A_2]. \]

\[d(H_i) = \frac{\dim H_i}{\dim H} \]

- Quantumly, H_1, H_2 independent if
 \[d(H_1 \land H_2) = d(H_1) d(H_2); \]
 \[d(H_1 \land H_2^\perp) = d(H_1) d(H_2^\perp); \]
 \[d(H_1^\perp \land H_2) = d(H_1^\perp) d(H_2); \]
 \[d(H_1^\perp \land H_2^\perp) = d(H_1^\perp) d(H_2^\perp). \]
More than 2 subspaces

- \(H \) is independent of \(H_1, \ldots, H_m \) if \(H \) is independent of any combination (union, intersection, complement) of \(H_1, \ldots, H_m \).
Theorem Let H_1, \ldots, H_m be subspaces with:

- $d(H_i) \leq \varepsilon$;
- Each H_i independent of all but at most d other H_j.
- $e(d+1) \varepsilon < 1$.

Then, there is $|\Psi\rangle$, $|\Psi\rangle \perp H_i$ for all i.

Quantum LLL
Proof of quantum LLL
Our goal

- Need to show: there exists $|\Psi\rangle$, $|\Psi\rangle \perp H_i$ for all i.
- Equivalently, $|\Psi\rangle \in H_i^\perp$ for all i.

$$\dim \bigcap_i H_i^\perp > 0$$
Main lemma

\[H' = \bigcap_{i_1} H_i \cap \bigcap_{i_2} H_i \cap \ldots \cap \bigcap_{i_j} H_i \]

Then

\[
\frac{\dim H_i \cap H'}{\dim H'} \geq 1 - \frac{1}{k + 1}
\]

for any other \(H_i \).

Corollary:

\[
\dim \bigcap_{i=1}^{m} H_i \geq \left(1 - \frac{1}{k + 1}\right)^m > 0
\]
Application: quantum k-SAT
Quantum SAT

- **k-SAT:**
 - variables $x_1, ..., x_N$.
 - $F = F_1 \land ... \land F_m$;
 - $F_i = y_{i,1} \lor ... \lor y_{i,k}$;
 - $y_{i,l} = x_j$ or $\neg x_j$.
 - **Goal:** $F = \text{true}$.

- **k-QSAT**
 - N qubits;
 - $H = H_1 + ... + H_m$;
 - Each H_i involves k qubits;
 - Each H_i – projector to 1 of 2^k dimensions.
 - **Goal:** $H \mid \Psi \rangle = 0$.

Theorem

- Assume that
 - $H = H_1 + \ldots + H_m$, etc.
 - each H_i has common qubits with at most $d = 2^{k/e-1}$ other H_j.
- Then there exists $\langle \Psi \mid H \mid \Psi \rangle = 0$.
Proof

- Each H_i is a projector on S_i:
 \[d(S_i) = \frac{1}{2^k} \]

- QLLL:
 \[e(d+1) \frac{1}{2^k} < 1 \implies |\Psi\rangle: |\Psi\rangle \perp S_i \]

\[H|\Psi\rangle = 0 \]
Random k-SAT and k-QSAT
Random k-SAT

- $F = F_1 \land ... \land F_m$;
- Each F_i – random k-clause.
- What should m be so that F is satisfiable w.h.p.?

Ratio m/n.
Random k-SAT

- Threshold c_k, for large n:
 - If $m < (c_k - \varepsilon) n$, then $F \in \text{SAT}$ w.h.p.
 - If $m > (c_k + \varepsilon) n$, then $F \notin \text{SAT}$ w.h.p.

- $3.52 < c_3 < 4.49$.

- Large k:

 \[2^k \ln 2 - O(k) \leq c_k \leq 2^k \ln 2. \]
Random k-QSAT [Bravyi, 06]

- $H = H_1 + \ldots + H_m$.

- Each H_i – random projector to 1 of 2^k dimensions for random k qubits.

- Do we have $\langle \Psi | H | \Psi \rangle = 0$?

Ratio $q_k = m/n$.
Results on quantum k-SAT
[Laumann et al., 09]

- $q_2 = 1/2$.
- For large k, $1 - \varepsilon < q_k < 0.574 \cdot 2^k$.

Classically, $c_k < \ln 2 \cdot 2^k = 0.69 \cdot 2^k$.

Huge gap between upper and lower bounds.
Our result

- **Theorem**

\[q_k \geq \frac{2^k}{8ek^2} \]

- Since each \(H_i \) involves \(k \) qubits, this corresponds to each \(H_i \) having common qubits with \(\frac{2^k}{8ek} \) other \(H_j \), on average.

QLLL: \(\frac{2^k}{ek} \), worst case.
Solution

- Divide qubits into two sets:
 - “high-degree”: includes all qubits that are contained in many H_j and those that are in H_i with such qubits.
 - “low-degree”.

- Use QLLL on “low-degree” set, another approach on “high-degree” set.

- Combine the two solutions.
[Laumann, et al., 09]

- \[H = H_1 + \ldots + H_m. \]

- **Theorem** If \(f: \{1, \ldots, m\} \to \text{qubits} \):
 - \(f(i) \) – qubit that is involved in \(H_i \);
 - \(f(i) \neq f(j) \),

there exists \(|\Psi\rangle: H |\Psi\rangle = 0.\)