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In this note, we present an infinite family of promise problems which can be solved exactly
by just tuning transition amplitudes of a two-state quantum finite automaton operating in
realtime mode, whereas the size of the corresponding classical automata grows without
bound.
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1. Introduction

The exact quantum computation has been widely ex-
amined for both partial (promise) and total functions (e.g.
[5,3,2,6,11,7,14,9,16]). On the other hand, in automata the-
ory, only two results have been obtained:

(i) Klauck [11] has shown that realtime quantum finite
automata (QFAs) cannot be more concise than real-
time deterministic finite automata (DFAs)3 in case of
language recognition, and

(ii) Murakami et al. [14] have shown that there is a
promise problem solvable by quantum pushdown au-
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tomata but not by any deterministic pushdown au-
tomaton.

In this note, we consider succinctness of realtime QFAs
for promise problems. We present an infinite family of
promise problems which can be solved exactly by just
tuning transition amplitudes of a two-state realtime QFAs,
whereas the size of the corresponding classical automata
grows without bound.

2. Background

Throughout the paper,

(i) Σ denotes the input alphabet not containing left- and
right-end markers (¢ and $, respectively), and Σ̃ =
Σ ∪ {¢,$},

(ii) ε is the empty string,
(iii) wi is the ith symbol of a given string w , and
(iv) w̃ represents the string ¢w$, for w ∈ Σ∗ .

Moreover, all machines presented in the paper operate in
realtime mode. That is, the input head moves one square
to the right in each step, and the computation stops after
reading $.
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A promise problem is a pair A = (Ayes, Ano), where
Ayes, Ano ⊆ Σ∗ and Ayes ∩ Ano = ∅ [15]. A promise prob-
lem A = (Ayes, Ano) is solved exactly by a machine M if
each string in Ayes (resp., Ano) is accepted (resp., rejected)
exactly by M. Note that language recognition is a special
case of solving promise problems, i.e. Ayes ∪ Ano = Σ∗ in
case of language recognition.

We give our quantum result for the most restricted of
the known QFA models, i.e. Moore–Crutchfield quantum fi-
nite automaton (MCQFA) [13] (see [17] for the definition of
the most general QFA model).

An MCQFA is a 5-tuple

M = (
Q ,Σ, {Uσ | σ ∈ Σ̃},q1, Q a

)
,

where Q = {q1, . . . ,qn} is the set of states, q1 is the ini-
tial state, Q a ⊆ Q is the set of accepting states, and Uσ ’s
are unitary operators. The computation of an MCQFA on
a given input string w ∈ Σ∗ can be traced by a |Q |-
dimensional vector. This vector is initially set to |v0〉 =
(1 0 · · · 0)T , and evolves according to

|vi〉 = U w̃i
|vi−1〉, 1 � i � |w̃|.

At the end of the computation, w is accepted (resp., re-
jected) with probability ‖Pa|v |w̃|〉‖2 (resp., ‖Pr |v |w̃|〉‖2),
where Pa = ∑

q∈Q a
|q〉〈q| and Pr = I − Pa .

If we replace each unitary operator with a left stochas-
tic operator, we obtain a realtime probabilistic finite au-
tomaton (which we call simply a PFA). A PFA is a 5-tuple

P = (
Q ,Σ, {Aσ | σ ∈ Σ̃},q1, Q a

)
,

where Aσ ’s are left stochastic operators. The computation
of a PFA on a given input string w ∈ Σ∗ can be traced
by a |Q |-dimensional vector. This vector is initially set to
v0 = (1 0 · · · 0)T , and evolves according to

vi = Aw̃i
vi−1, 1 � i � |w̃|.

At the end of the computation, w is accepted (resp., re-
jected) with probability

∑
qi∈Q a

v |w̃|[i] (resp.,∑
qi∈(Q \Q a)

v |w̃|[i]). If we allow only zero–one entries in
each stochastic operator, we obtain a realtime DFA (which
we call simply a DFA).

3. The main results

Let Ak
yes = {ai2k | i is a nonnegative even integer} and

Ak
no = {ai2k | i is a positive odd integer} be two unary lan-

guages, where k is a positive integer. We will show that
a two-state MCQFA can solve promise problem Ak =
(Ak

yes, Ak
no) exactly, but any DFA must have at least 2k+1

states to solve the same problem.

Theorem 1. Promise problem Ak = (Ak
yes, Ak

no) can be solved by
a two-state MCQFA Mk exactly.

Proof. We will use a well-known technique given in [1].
Let N = 2k and Mk = (Q ,Σ, {Uσ | σ ∈ Σ̃},q1, Q a), where
Q = {q1,q2}, Σ = {a}, Q a = {q1}, U¢ = U$ = I , and Ua is a
rotation in |q1〉–|q2〉 plane with angle θ = π , i.e.
2N
Ua =
(

cos θ − sin θ

sin θ cos θ

)
.

The computation begins with |q1〉 and, after reading each
block of N a’s, the following pattern is followed by Mk:

|q1〉 aN−→ |q2〉 aN−→ −|q1〉 aN−→ −|q2〉 aN−→ |q1〉 aN−→ · · · .
Therefore, it is obvious that Mk solves promise problem
Ak exactly. �
Lemma 1. Any DFA solving Ak = (Ak

yes, Ak
no) must have at least

2k+1 states.

Note. We give a classical lower bound for DFAs since PFAs
cannot be concise than DFAs in the case of solving promise
problem exactly.4

Proof. Let N = 2k and D be an m-state DFA solving Ak .
We show that m cannot be less than 2N .

Since both Ak
yes and Ak

no contain infinitely many unary
strings, there must be a chain of t states, say s0, . . . , st−1,
such that, for sufficiently long strings, D enters this chain
in which D transmits from si to s(i+1 mod t) when reading
an a, where 0 � i � t − 1 and 0 < t � m.

Without loss of generality, we assume that D accepts
the input if it is in s0 before reading $. Thus, D rejects
the input if it is in s(N mod t) before reading $. Let Sa be
the set {s(i2N mod t) | i � 0}. Then, D accepts the input if
it is in one of the states in Sa before reading $. Note that
s(N mod t) /∈ Sa .

Let d = gcd(t,2N), t′ = t
d , and S ′ be the set {sid | 0 �

i < t′}.

Claim 1. Sa = S ′ .

Proof. Since Sa ⊆ S ′ and |S ′| = t′ , we can obtain Sa = S ′ if
we show |Sa| � t′ . We show |Sa| � t′ in three steps:

1. Firstly, we show that each i satisfying (i2N ≡ 0 mod t)
must be a multiple of t′: For such an i, there exists
a j such that i2N = jt . By dividing both sides with
t = dt′ , we get i

t′
2N
d = j. This implies that i must be

a multiple of t′ since the left side must be an integer
and gcd(t′,2N) = 1.

2. Secondly, we show that there is no i1 and i2, i.e. t′ >

i1 > i2 � 0, such that (i12N ≡ i22N mod t). If so, we
have (i12N − i22N ≡ 0 mod t), and then ((i1 − i2)2N ≡
0 mod t). This implies that (i1 − i2) must be a multiple
of t′ . This is a contradiction.

3. Thus, for each i ∈ {0, . . . , t′ − 1}, we obtain a different
value of (i2N mod t) and so |Sa| contains at least t′
elements, i.e. |Sa| � t′ . �

4 Let A = (Ayes, Ano) be a promise problem exactly solvable by a PFA.
Then, we can easily convert this PFA to a DFA by keeping one of proba-
bilistic choice in each transition and removing all the other probabilistic
choices. Thus, the DFA also solves A since it always accepts (resp., rejects)
the strings in Ayes (resp., Ano).
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Suppose that gcd(t, N) = d. Since d divides (N mod t),
s(N mod t) becomes a member of S ′ by definition. Due to
Claim 1 (Sa = S ′), s(N mod t) also becomes a member of Sa .
But we know that s(N mod t) /∈ Sa . Therefore, gcd(t, N) must
be different than d = gcd(t,2N).

Since N = 2k and 2N = 2k+1, this is only possible if t is
divisible by 2k+1 = 2N . �

Since a 2k+1-state DFA solving promise problem Ak can
be constructed in a straightforward way, we obtain the fol-
lowing theorem.

Theorem 2. The minimal DFA solving the promise problem
Ak = (Ak

yes, Ak
no) has 2k+1 states.

4. Concluding remarks

In this paper, we identify a case in which the superi-
ority of quantum computation to classical one cannot be
bounded. For this purpose, we use an infinite family of two
unary disjoint languages containing the strings of the form
(a2n)∗ and an(a2n)∗ , respectively, where n is a power of 2.

What happens if n is not an exact power of 2? For
quantum case, we can still solve the same problem with
2 states. On the other hand, for the classical case, the
minimum number of states is determined by the biggest
factor of the number, which is a power of 2. Let N =
2k(2l + 1) and AN = (AN

yes, AN
no) be a promise problem

such that AN
yes = {aiN | i is a nonnegative even integer} and

AN
no = {aiN | i is a positive odd integer}, where k, l � 0.

Corollary 1. The minimal DFA solving promise problem AN =
(AN

yes, AN
no) has 2k+1 states.5

Therefore, if N is an odd integer, a DFA only needs 2
states to solve the related promise problems.
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