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Jānis C̄ırulis

ORTHOPOSETS WITH QUANTIFIERS

Abstract

A quantifier on an orthoposet is a closure operator whose range is closed under

orthocomplementation and is therefore a suborthoposet. There is a natural bijec-

tive connection between quantifiers and their ranges. We extend it to a bijective

connection between certain families of quantifiers on an orthoposet and certain

families of its suborthoposets.

1. Introduction

In algebraic logic, an existential quantifier (called also a cylindrification)
on a Boolean algebra A is a unary operation ∃ satisfying certain axioms.
The standard defining axiom set is

(∃1) : ∃0 = 0,
(∃2) : p ≤ ∃p,
(∃3) : ∃(p ∧ ∃q) = ∃p ∧ ∃q.

[12, Part 1] and [15, Sect. 1.3] are good sources of information about gen-
eral properties of quantifiers. Either by means of (∃1)–(∃3) (usually, the
additivity rule

(∃4) : ∃(a ∨ b) = ∃a ∨ ∃b,
which normally is a consequence of (∃1)–(∃3), is also added) or of some
other set of axioms which contains or implies these, quantifiers have been
defined also on lattice structures weaker than Boolean algebras; see, for
instance, [4, 16, 17, 18, 24]. Moreover, counterparts of (∃3) and (∃4) have
turned out to be useful even in situations when the algebraic analogues of
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conjunction or disjunction lack some of the three characteristic properties
of a semilattice operation [6, 8, 11, 21, 25, 26].

A less familiar (but equivalent: see Theorem 3 in [12]) axiom system
for quantifiers on Boolean algebras goes back to [10], where an algebraic
theory of modal S5-operators is sketched. It consists of (∃2) and

(∃5) : if p ≤ q, then ∃p ≤ ∃q,
(∃6) : ∃((∃p)⊥) = (∃p)⊥.

Sometimes (as in [15, p. 177]) (∃5) is replaced by the formally stronger
equational property (∃4). These axioms also have been used in algebras
more general than Boolean ones [2, 3, 19, 20, 22].

At last, an operation on a Boolean algebra A is a quantifier if and only
if it is a closure operator whose range is a subalgebra of A ([12], Theorem
3). A similar theorem holds true also in several more general situations
[1, 3, 5], sometimes in a modified form [2, 19]. Actually, the theorem is the
prototype of a much more general result in categorical logic.

Remark 1. By a closure operator on any ordered set we mean in this
paper an increasing, isotonic and idempotent operation. In [12], a closure
operator is required also to be normalized and additive (properties (∃1) and
(∃4), respectively). However, (∃1) is not used in the proof of the theorem
mentioned in the preceding paragraph, and (∃4) is needed only in the proof
that item (i) of the theorem follows from (iii), i.e., that (∃6) implies (∃3).
But, as shown in [10], an operation satisfying (∃2), (∃5) and (∃6) is additive
(and normalized as well); cf. Proposition 2.1 in the next section. Therefore,
our formally weaker formulation of the theorem is, in fact, equivalent to
the original one.

The notion of a quantifier algebra [13] was introduced to formalize the
idea of a Boolean algebra equipped with a family of quantifiers interacting
with each other as in first-order logic. Defined in a slightly more abstract
form, a quantifier algebra is a triple (A, T, ), where A is a Boolean alge-
bra, T is a lower bounded join semilattice, and is a function from T to
quantifiers on A such that

(0) = idA, (s) (t) = (s ∨ t),

where idA stands for the identity map on A (cf. [7]). The original definition
of [13] is a particular case with T the powerset of some set I. Informally,
elements of I are interpreted as variables over some set, and those of A, as
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entities depending of these variables (say, as Boolean-valued first-order logic
formulas considered up to logical equivalence); a quantifier (s) is thought
of as binding all variables from s. If T is the set of all finite subsets of
I, we come to the version of a quantifier algebra, called quasi-quantifier
algebra in [7]. There is another possible interpretation of a quantifier as
a projection of A onto its range; see Sect. 2 of [7] for more details. A
projection algebra is a system (A, T, ), where A is still a Boolean algebra,
but T is a meet semilattice and is a function from T to quantifiers on A
such that (s) (t) = (s ∧ t). A projection algebra is said to be rich, if
every element of A is in the range of some (t); if T has the largest element
1, then this requirement can be replaced by a single identity (1) = idA. In
the aforementioned case when T is a powerset of I, every quantifier algebra
gives rise to a rich projection algebra by interchanging (I \ s) and (s).

In this paper we deal with quantifiers on orthoposets, which seem to
be the weakest structures where the axioms (∃2), (∃5), (∃6) are still able
to provide a reasonable notion of quantifier. We consider orthoposet-based
projection algebras (called Q-orthoposets here), introduce the notion of
Q-atlas of suborthoposets of an orthoposet, and show that a Q-atlas is
the family of ranges of quantifiers in an appropriate Q-orthoposet. Ac-
tually, there is bijective connection between systems of quantifiers on a
Q-orthoposet and Q-atlases for it. The necessary definitions and some
elementary properties of quantifiers on orthoposets are given in the next
section, Q-atlases are discussed in Section 3, and the main results are pre-
sented in the last, fourth, section.

2. Orthoposets with quantifiers

Recall that an orthoposet is a system (P,≤,⊥, 0, 1), where (P,≤, 0, 1) is a
bounded poset and the operation ⊥ is an orthocomplementation on L:

� p ≤ q implies that q⊥ ≤ p⊥,
� p⊥⊥ = p,
� 1 = p ∨ p⊥, 0 = p ∧ p⊥.

(we let a ∨ b and a ∧ b stand for the l.u.b., resp., g.l.b of a and b). De
Morgan duality laws hold in an orthoposet in the following form: if one
side in the identities

(p ∧ q)⊥ = p⊥ ∨ q⊥, (p ∨ q)⊥ = p⊥ ∧ q⊥

is defined, then the other one is, and both are equal.
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We call a quantifier on P any operation ∃ satisfying (∃2), (∃5) and
(∃6); cf. [3]. The subsequent proposition is an adaption of Lemma 2.1 in
[10], stated there for Boolean algebras.

Proposition 2.1. Every quantifier ∃ on an orthoposet has the following
properties:

(∃7) : ∃1 = 1,
(∃1) : ∃0 = 0,
(∃8) : ∃∃p = ∃p,
(∃9) : p ≤ ∃q if and only if ∃p ≤ ∃q,

(∃10) : the range of ∃ is closed under existing meets and joins,
(∃11) : if p ∨ q exists, then ∃(p ∨ q) = ∃p ∨ ∃q.

Proof: (∃7) By (∃2).
(∃1) By (∃7) and (∃6), ∃0 = ∃((∃1)⊥) = (∃1)⊥ = 0.
(∃8) Let r := ∃p. By (∃6), then r⊥ = ∃(r⊥) and also

∃∃p = ∃(r⊥⊥) = ∃((∃(r⊥))⊥) = (∃(r⊥))⊥ = r⊥⊥ = ∃p.

(∃9) This well-known characteristic of ∃ as a closure operator follows
from (∃2), (∃5) and (∃8).

(∃10) Suppose that r := ∃p ∧ ∃q exists; we shall prove that r = ∃r.
Clearly, r ≤ ∃r by (∃2). On the other hand, ∃r ≤ ∃∃p ≤ ∃p by (∃5) and
(∃8), and likewise ∃r ≤ ∃q. Thus, ∃r ≤ r and, finally, ∃r = r by (∃2).
Consequently, if r := ∃p ∨ ∃q exists, then r = ∃r by (∃8) and De Morgan
laws.

(∃11) Suppose that r := p∨ q exists. As r′ := ∃p∨∃q exists and equals
to ∃(r′) by (∃10), we get r ≤ r′ = ∃(r′) by (∃2). Now (∃9) implies that
∃r ≤ ∃(r′) = r′; the reverse inequality holds in virtue of (∃2).

Therefore, every quantifier on an orthoposet is a closure operator. The
subsequent corollary to Proposition 2.1 is an orthoposet version of a clas-
sical result on quantifiers on Boolean algebras, which was mentioned in
Introduction.

A suborthoposet, or just a subalgebra of an orthoposet P is any subset
of P with the inherited ordering that contains 0 and 1 and is closed under
orthocomplementation. We may consider in P partial operations of join of
meet and thus view it as a partial ortholattice (P,∨,∧,⊥, 0, 1). A partial
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subortholattice of P is then any suborthoposet that is closed under existing
joins and, hence, also existing meets.

Corollary 2.2. An operation ∃ on P is a quantifier if and only if it is a
closure operator whose range is a subalgebra of P . If this is the case, then
the range of ∃ is even a partial subortholattice of P .

As every closure operator on an orthoposet preserves 1, the require-
ment put here on its range may be even weakened: it suffices that the
range be closed under orthocomplementation. Closure operators having
this property are known as symmetric; see [9] and references therein.

Recall that, in any poset P , a subset P0 is a range of a closure operator
if and only if it is relatively complete in the sense that, for every p ∈ P , the
subset {q ∈ P0 : p ≤ q} has the least element π(p), i.e.,

p ≤ q if and only if π(p) ≤ q

whenever q ∈ P0 and p ∈ P . The surjective mapping π : P → P0 is then
the closure operator corresponding to P0. Now it immediately follows that

an operation on P is a quantifier if and only if its range is a
relatively complete subalgebra of P .

Moreover, the connection between quantifiers and relatively complete sub-
algebras is bijective. For Boolean algebras, this characteristic of quantifiers
is contained in Theorems 3 and 4 of [12], for orthomodular lattices, in The-
orem 3 of [23], and for ortholattices, in Theorem 16 of [3] (as may be seen
from its proof, the relatively complete sublattice of an ortholattice, which
is mentioned in its statement, should actually be a subortholattice).

We now introduce the central notion of the paper. Let T := (T,∧) be
a fixed meet semilattice.

Definition 2.3. By a system of quantifiers on an orthoposet P we mean
a family := (∃t : t ∈ T ) of quantifiers on P where T := (T,∧) is a fixed
meet semilattice and, for all s, t ∈ T ,

� ∃t∃sp = ∃s∧tp,
� every element of P is in the range of some ∃t.

The system is said to be faithful if

� ∃s = ∃t only if s = t.
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An orthoposet with quantifiers, or just a Q-orthoposet, is an ordered alge-
bra (P,∃t)t∈T , where P is an orthoposet and (∃t : t ∈ T ) is a system of
quantifiers on P . The semilattice T is called the scheme of the algebra.

Therefore, a rich projection algebra (see Introduction) is essentially
an Q-orthoposet of particular kind (P is a Boolean lattice). Our final
result (Theorem 4.4) extends Corollary 2.2 and characterises systems of
quantifiers in terms of their ranges (and certain mappings between them).

3. Q-atlases of orthoposets

We adapt the notion of atlas from investigations of structure of quantum
logics, and modify it as follows. Let T , as above, be a meet semilattice.
A family of orthoposets (Pt : t ∈ T ) is said to be a (T -shaped) atlas of
orthoposets if it satisfies the conditions

(A1): if s ≤ t, then Ps is a suborthoposet of Pt,
(A2) : if s, t ≤ u for some u ∈ T , then Ps ∩ Pt = Ps∧t.

If the union P of all members of the family happens to be an orthoposet
again, and if each Pt is a suborthoposet of P, then the orthoposet may be
considered as a pasting of the family; we say in this case that (Pt : t ∈ T )
is an atlas for P . We want each suborthoposet Pt to be the range of a
quantifier belonging to some system of quantifiers on P ; therefore, members
of an atlas should be structured and interrelated in an appropriate way. For
this purpose, it is convenient to require, in particular, that Ps is a relatively
complete subset of Pt whenever s ≤ t. In this way, we come to Q-atlases.

Let P := (Pt, π
t)s≤t∈T be an inverse family of orthoposets with T a

meet semilattice. This means that each Pt is an orthoposet, πt
s is a mapping

Pt → Ps and, for all appropriate s, t, u ∈ T , the identities

(π1) : πt
t = idPt

,
(π2) : πt

sπ
u
t = πu

s

hold. We call T the scheme of P . If, in addition, (Pt : t ∈ T ) is an atlas,
we call P a structured atlas. Given such an atlas for an orthoposet P , we
already can introduce a family of operations ∃t on P by setting ∃tp :=
πs
s∧t(p) provided that p ∈ Ps. To have an assurance that these operations

are well-behaved closure operators, we put some further conditions on P .
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Definition 3.1. P is a Q-atlas (of orthoposets) for an orthoposet P if
each Pt is a suborthoposet of P , P =

⋃
(Pt : t ∈ T ), and the following

conditions are fulfilled:

(A3) : if s ≤ t, then πt
s(Pr) ⊆ Pr for all r ≤ t,

(A4) : if s ≤ t, then Ps ⊆ πt
s(Pt) (i.e., each πt

s is surjective),
(A5) : if p ∈ Ps and q ∈ Pt, then p ≤ q if and only if πs

s∧t(p) ≤ q.
A Q-atlas is faithful if πt

s = idPt
only if s = t.

The subsequent lemma shows that each operation πt
s is a quantifier on

Pt (cf. Sect. 2) and that these quantifiers are interrelated in a Q-atlas in a
proper way.

Lemma 3.2. Suppose that P is a Q-atlas for P . Then every algebra
(Pt, π

t
s)s≤t is a Q-orthoposet with sheme (t].

Proof: It follows from (A1) that Pt is closed under all operations πt
s, and

from (A4), that if p ∈ Ps and s ≤ t, then p = πt
s(r) for some r ∈ Pt.

By (A5), then q ≤ πt
s(r) iff πt

s(q) ≤ πt
s(r), provided that q ∈ Pt. This

means that πt
s is a closure operator on Pt (cf. (∃9)) with range Ps. As Ps

is a subalgebra of Pt, the operation πt
s is even a quantifier (Corollary 2.2).

We next prove that

(π3) : πs
s∧t(p) = πu

t (p) whenever s, t ≤ u and p ∈ Ps.

Suppose that s, t ≤ u. If p ∈ Ps, then p is a fixed point of the closure
operator πu

s . Using (π2), further

πs
s∧t(p) = πs

s∧t(π
u
s (p)) = πu

s∧t(p) = πt
s∧t(π

u
t (p)).

But πu
t (p) belongs to Pt and, in virtue of (A3), to Ps; so, πu

t (p) ∈ Ps∧t
by (A2). Hence, πu

t (p) = πt
s∧t(π

u
t (p)) = πs

s∧t(p), as needed.
Now if s, s′ ≤ t, then πt

sπ
t
s′ = πs′

s∧s′π
t
s′ = πt

s∧s′ by (π3) and (π2). As
every element of Pt lies in the range of πt

t , eventually Pt is a Q-orthoposet.

Remark 2. The identity (π3) was derived from (A2) and (A3). It is
easily seen that, conversely, the identity implies (A2): if p ∈ Ps, Pt and
u ≥ s, t, then p = πu

t (p) = πs
s∧t(p) ∈ Ps∧t; the converse inclusion follows

from (A1). The identity implies also (A3): if s, t ≤ u and p ∈ Ps, then
πu
t (p) = πs

s∧t(p) ∈ Ps∧t ⊆ Ps. Therefore, (π3) could replace items (A2)
and (A3) in the definition of a Q-atlas.
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4. From quantifier systems to Q-atlases and back

We are now going to show that there is a bijective connection between
quantifier systems and Q-atlases. T is still a fixed meet semilattice.

Theorem 4.1. Suppose that (∃t : t ∈ T ) is a quantifier system on an or-
thoposet P. Let Pt := ran∃t, and let πt

s : Pt → Ps with s ≤ t be mappings
defined by πt

s(q) := ∃s(q). Then the system P := (Pt, π
t
s)s≤t∈T is a Q-atlas

for P. It is faithful if the initial system of quantifiers is faithful.

Proof: Assume that (P,∃t)t∈T is a Q-orthposet and that Pt and πt
s are

chosen as said in the theorem. Then Pt is a subalgebra of P (Corollary
2.2) and their union coincides with P (Definition 2.3). Observe also that

(∃12) : ∃s∃t = ∃s = ∃t∃s whenever s ≤ t .

Evidently, then the family (πt
s : s ≤ t ∈ T ) satisfies identities in (π1) and

(π2). We now check that P obeys the conditions of Definition 3.1.
(A1) Follows from (∃12).
(A2),(A3) Suppose that s, t ≤ u and p ∈ Ps (so that ∃sp = p). Then

πs
s∧t(p) = ∃s∧tp = ∃t∃sp = ∃tp = πu

t (p), and (π3) holds. See Remark 3.
(A4) It is enough to show that Ps ⊆ πt

s(Pt) for s ≤ t. If q ∈ Ps, then,
for some p ∈ P , q = ∃sp = ∃s∃tp in virtue of (∃12). As ∃tp ∈ Pt, it follows
that q ∈ πt

s(Pt), as needed.
(A5) Let p ∈ Ps and q ∈ Pt. Then p = ∃sp, q = ∃tq and, by (∃9),

p ≤ q iff ∃sp ≤ ∃tq iff ∃s∧tp = ∃t∃sp ≤ ∃tq iff πs
s∧t(p) ≤ q,

and (π??) holds. This ends the proof of the first assertion. The second
one follows from the observation that every quantifier is determined by its
range. Suppose that s ≤ t (and Ps ⊆ Pt); then πt

s = idPt iff ∃sq = q for all
q ∈ Pt iff Pt = Ps iff ∃t = ∃s, and then s = t.

Theorem 4.2. Suppose that (Pt, π
t
s)s≤t∈T is a Q-atlas for an orthoposet P .

Let, for every t ∈ T , ∃t be an operation on P defined as follows: whenever
p ∈ Ps, ∃tp := πs

s∧t(p). Then

(a) the definition of ∃tp is correct: it does not depend on the choice of s,

(b) the operation ∃t is a quantifier on P with range Pt,

(c) the family (∃t : t ∈ T ) is a system of quantifiers for P ,

(d) it is faithful if the initial Q-atlas is faithful.



Orthoposets with Quantifiers 9

Proof: (a) If also p ∈ Ps′ , then p ∈ Ps ∩ Ps′ = Ps∧s′ . Hence, πs′

s′∧t(p) =

πs∧s′
s∧s′∧t(p) by (π3), and likewise πs

s∧t(p) = πs∧s′
s∧s′∧t(p). Thus, πs

s∧t(p) =

πs′

s′∧t(p).
(b) As to the range of ∃t, if p ∈ Ps, then πs

s∧t(p) ∈ Ps∧t ⊆ Pt; hence,
ran∃t ⊆ Pt. On the other hand, if p ∈ Pt, then evidently ∃tp = p by (π1),
so that Pt ⊆ ran∃t.

By virtue of Corollary 2.2, it remains to show that each ∃t is a closure
operator, i.e., satisfies (∃9). We get from (A5) that p ≤ q iff ∃t(p) ≤ q
whenever p ∈ Ps and q ∈ Pt. As q can be presented in the form ∃tr for
some r ∈ P, we conclude that, for every p and all r from P , p ≤ ∃tr iff
∃tp ≤ ∃tr as needed.

(c) Let p be any element of P . If p ∈ Pr, then, by (π2),

∃t∃sp = ∃t(πr
r∧s(p)) = πr∧s

s∧r∧t(π
r
r∧s(p)) = πr

s∧r∧t(p) = ∃s∧tp.

It remains to recall the definition of atlas for P .
(d) Suppose that the Q-atlas (Pt, π

t
s)s≤t∈T is faithful. If ∃s = ∃t, then

πt
s(q) = q for every q ∈ Pt, and, further, s = t.

Therefore, we have a transformation F of quantifier systems on P into
Q-atlases for P , and a transformation G of Q-atlases for P into quantifier
systems on P . Moreover, both transformations preserve faithfulness.

Theorem 4.3. The transformations F and G are mutually inverse.

Proof: Suppose that P is an orthoposet. Let := (∃t : t ∈ T ) be a quan-
tifier system on P , and let P := (Pt, π

t
s)s≤t∈T be the corresponding Q-atlas.

If ∃′t is a quantifier induced by P and p ∈ Ps = ran∃s for some s ∈ T , then
∃′tp = πs

s∧t(p) = ∃s∧tp = ∃t∃sp = ∃tp. Conversely, let P := (Pt, π
t
s)s≤t∈T

be a Q-atlas for P , and let := (∃t : t ∈ T ) be the corresponding quantifier
system. If (P ′t , π

t
s)s≤t∈T is the Q-atlas induced by , then P ′t = ran∃t = Pt

and πt
s(q) = ∃sq = πt

s∧t(q) = πt
s(q) for all q ∈ Pt by (π3).

As a consequence, we now obtain the extension of Corollary 2.2 men-
tioned at the end of Sect. 2.

Theorem 4.4. Let P be an orthoposet, and let T be a meet semilattice. A
family := (∃t : t ∈ T ) of operations on P is a system of quantifiers if and
only if each ∃t is a closure operator and there is a structured atlas P :=
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(Pt, π
t
s)s≤t∈T for P such that (i) Pt := ran∃t, (ii) for all p, ∃tp = πs

s∧t(p)
for any s with p ∈ Ps, (iii) the condition (A3) is also fulfilled.

Proof: Necessity of both conditions folows immediately from Theorem
4.1: if P is the Q-atlas corresponding to , then, for any s such that
p ∈ Ps, ∃tp = ∃t∃sp = ∃s∧tp = πs

s∧tp, and P is therefore the required
structured atlas for P .

To prove their sufficiency, suppose that all ∃t are quantifiers and that
P is a structured atlas as described in the theorem. By Corollary 2.2, then
all operations ∃t are quantifiers. It remains to prove that ∃s∃t = ∃s∧t for
all s and t in T . We may proceed as in the proof of Theorem ??(c) if the
right-hand side in the identity (ii) does not depend of the choice of s. That
it does not depend indeed, can be shown as in the proof of Theorem ??(a)
((π3) is available by Remark 3).

In the particular case when T is a two-element semilattice {0, 1} with
0 < 1, the quantifier ∃1 in Q is the identity mapping, its range P1 coincides
withA, and (A5) reduces to (∃9). Thus, in this case, the theorem essentially
says that the operation ∃0 on P is a quantifier if and only if its range P0

is a suborthoposet of P and the operation itself is a closure operator (see
Corollary 2.2).
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