Near Real-time Data Warehousing with Multi-stage
Trickle & Flip

Janis Zuters

University of Latvia, 19 Raina blvd.,
LV-1586 Riga, Latvia
janis.zuters@u.lv

Abstract. A data warehouse typically is a collection of digtal data designed

for decision support, so it is updated from thersesl periodically, mostly on a
daily basis. Today's business however asks fohé&eslata. Real-time ware-
housing is one of the trends to accomplish this there are a number of chal-
lenges to move towards true real-time. This papep@ses ‘Multi-stage Trickle

& flip’ methodology for data warehouse refreshmenis based on the ‘Trickle

& flip’ principle and extended in order to furthigisulate loading and querying
activities, thus enabling both of them to be mdfieient.

Keywords: Real-time data warehousing, data refreshment,ldating

1 Introduction

A data warehouse (DW) is a collection of technaggiimed at enabling the knowl-
edge worker (executive, manager, and analyst) tkenmetter and faster decisions.
Traditional online transaction processing (OLTP3teyns are inappropriate for deci-
sion support. Data warehousing has become an iamgostrategy to integrate hetero-
geneous data sources and to enable online anpigiiessing (OLAP) [1].

Traditionally a data warehouse is refreshed pecatyi (e.g. weekly, daily) and
can be considered as a window on the past. Ur#intty, using periodically updated
data was not a crucial issue. However, with eniseprsuch as e-business, stock bro-
kering, online telecommunications, and health systdor instance, relevant informa-
tion needs to be delivered as fast as possiblendevledge workers or decision sys-
tems who rely on it to react in a near real-timenn&, according to the new and most
recent data captured by an organization’s inforomasiystem [2]. This makes support-
ing near real-time data warehousing a criticaléseu such applications.

Today’s business demands are trying to gradualltyighte the inscription for his-
tory. Technically, one of the main roles a dataekause is to separate the analytical
part of the system from the operational one, ineori satisfy heavy performance
demands in both of them. Providing a data wareheideever fresher data makes
this task more and more difficult — a frequent $qzortation of data from sources to
data warehouse increases the collision risk betwladm loading and querying activi-
ties.

Real-time warehousing is an evitable stage of eiaiwf data warehouses. Unfor-
tunately this involves a lot of challenges and ¢raffs, especially those with regard to
state-of-the-art technologies; the most typicalsoase faced when data refreshment
can no longer be postponed to off-peak hours.

On the one hand, end-users of data warehousesneedresher data; on the other
hand this involves additional requirements to hamgnand possibly changes to data
analysis behaviour due to frequent loadings. Bexafisnore frequent and more com-
plex operations related to data loading, OLAP penfmce could degrade dramati-
cally.

Real-time data warehouses aim for decreasing the iti takes to make decisions
and try to attain zero latency between cause afedtefor that decision, closing the
gap between intelligent reactive systems and sysfgotesses. [3]

Moving towardgeal-timeinvolves a number of issues/requirements:

— When loading data (near) continuously in real-titheye can’t be any (trans-
actional) system downtime [4];

— By loading data continuously (more frequently thdaily), Query/OLAP
downtimes and other inconveniences should be tateraccount;

— The system becomes more complicated.

This makes the triple trade-off for the whole sysfer the sake of real-time:

— Data extraction should be as lightweight as possibl

— OLAP activities shouldn’t be much affected due torenfrequent loading;

— Data warehouse designers/users shouldn’t suffet &dm additional com-
plicacy of the system.

To solve this, a good deal of real-time approacimethodologies and technologies
have been proposed in each of the stages, inETal. (extract-transform-load), data
modelling, and data analysis.

The proposed approach of ‘Multi-stage Trickle &pflilies beyond actual data
transportation issues between the source systeththardata warehouse (e.g. change
data capture, CDC) and assumes conventional ETptedao get near real-time
warehousing put into effect.

2 Related Work

In general, the principle of ‘real-time’ is apprbad in several ways — from
technologies of data transportation to DW architexs and OLAP query issues.

One of the focuses is that of true real-time dedasportation between the opera-
tional systems and the data warehouse. Such teadias) approaches and protocols,
concerning data transport and integration, lie bdythe scope of this paper. Here
well matured ETL systems are assumed, and the idedcapproaches address the
aspects of DW affecting structures and manipulatiover the data after they have
been loaded from the sources.

Traditionally an ETL system (and thus DW refreshtném general) works in a
batch modgebutcontinuous ETltechnologies are also being evolved.

Near real-time data warehousiragldresses the challenge of need for fresh data by
simply shortening the data warehouse refreshmdetvils and hence, delivering
source data to the data warehouse with lower IsitEsjc This approach is referred to
as near real-time data warehousingricrobatchETL [6]. In contrast to “true” real-
time solutions this approach builds on the maturé proven ETL system and does
not require the re-implementation of the transfdromelogic.

A workable solution to it imear real-time ETLwhere the loading frequencies are
simply increased without any other changes on ystem (Fig. 1). This is the cheap-
est and the easiest way to solve the problem aady@od choice for relatively small
data warehouses until off-peak hour loadings becamissue.

As refreshment schedule is changed, additional sfféets appear. One is that of
refreshment anomalies during the ETL process, addckin [5].

If the refreshment rate exceeds microbatch badisl@ading is going to become
continuous, this will require new approaches awntirielogies lying beyond the scope
of this paper.

The ‘Trickle and Flip’ approach helps avert thelabgity issues associated with
querying tables of a data warehouse that are ingltaneously updated. [4] Here,
instead of continuous (or very frequent microbatohjling of data directly into ware-
house tables a staging area is used. To make thamjsr, the staging tables are ex-
actly of the same format as the target tables. yipglthe principle of ‘Trickle &
Flip’, on a periodic basis the staging tables asplidated and the copy is swapped
with the data warehouse tables. For smaller dateheaises the staging tables can
contain a complete copy of all data while for biggaes a typical case would be the
data for the current day being put into a sepgratgtion.

[3] proposes an integrated data warehouses loadittpodology that covers as
many as four different areas of operation: (a) dedsehouse schema adaptation, (b)
ETL loading procedures, (c) OLAP query adaptatiamg (d) DW database packing
and reoptimization. As previously, here also thimgiple is used to have the same
format for temporary tables as of the DW.

3 Trickle & Flip

This Section goes deeper into the ‘Trickle & Flgpproach, as further in this paper
this particular principle is being evolved.

If using ‘Trickle & Flip’, only very small data wahouses can do without a real-
time partition (Fig. 2). Applying the principle 6Ffrickle & Flip’ with real-time parti-
tions, on a periodic basis the staging tables amiachted and the copy is swapped
with the real-time tables (Figs. 3 and 4).

When used, real-time partitions imply additionatjugements to the system. A
real-time partition must [7]:

— Contain all the activity occurred since the ladlafe of the static data;
— Link as seamlessly as possible to the static ddlag;

— Be so lightly indexed that incoming data can betiooously fed in;

— Support high performance querying.

Microbatch OLAP
ETL

Source

database|” — ~ — ~"| Data

warehouse

Fig. 1. Near real-time warehousing with near real-time ETL

ETL
Staging
Source
- tables
database >

Copy OLAP

Copy of

staging

<=>
tables Flip Data

warehouse

Fig. 2. Data loading using ‘Trickle & Flip’ with completeopy of data in the staging tables.
Typical cycle times range from hourly to every nimor even faster

In particular, the latter two requirements are cetimg ones and thus potentially
leading to awkward trade-offs or workarounds.

If the integration of real-time partition is implemted through views, the swap op-
eration would only consist of changing the viewinigbn. Even though flipping op-
eration is a lightweight one, most likely it migh¢ advisable to temporally pause the
OLAP server.

In general, integrating real-time partitions int@ystem is very a complex task in
terms of engineering. The success is largely wbtlity of the query tool to encapsu-
late this complexity and to hide it from end-users.

A separate real-time data partition is a valuatdehmnique to reduce load-
ing/querying conflicts, yet at each flip (and tligsto occur many times a day) it is
advisable to restrict querying. If the warehous@dsancing towards real-time, the
cycle times can be as frequent as of several nspated this would put a heavy bur-
den to the end-users working on real-time data.

In this Section and further, it is assumed thatréhad-time data is loaded into the
static data warehouse on a daily basis (in peakaifs), so this particular loading is
not covered by the described refreshment methodsog

ETL OLAP

D1. v v
—»| Staging
tables

Source
database

Static data

Copy

D2. Copy
of staging D3. Real-
tables Flip time data

Data
warehouse|

Fig. 3. Data loading using ‘Trickle & Flip’ with a sepagateal-time partition. Real-time data
will typically contain the data of the current daly (A letter ‘D’ in D1, D2, and D3 stands for
‘day’), thus all the three partitions (D1, D2, an8) contain full data from the beginning of the
current day with potentially different latencies

ALGORITHM trickle_and_flip_refresh (R)
D3 —real-time partition of the DW (Fig. 3)
D1, D2 - staging partitions with the same data format as D3 (Fig. 3)
R — refreshment rate (e.g., 1 hour)

D1 is being continuously (or in a microbatch mode) fed from the source
BEGIN

Do Every R % e.g., every hour
Copy D1to D2 %i.e., do backup of D1 into D2
Flip D2 and D3 % D3 should not be locked by querying

Fig. 4. DW refreshment algorithm using ‘Trickle & Flip’dlated to Fig. 3). In off-peak time,
real-time data is added to the static DW and thgiisg tables are emptied.

Summary of the ‘Trickle & Flip’ approach (assumihg refreshment rate to be one
hour):
— All the three partitions contain approximately ttega from the beginning of
the day up to now;
— Normally, the data of the real-time partition ig ndder than 1 hour;
— Each hour the process of duplicating the dataefctirrent day is being per-
formed;
Each hour it is advisable to restrict querying (eal-time data)
The issues of the ‘Trickle & Flip’ approach:
— For very large DWs, copying the full day data eveoyr could matter;
— Real-time querying being impeded every hour;
— By reducing the refreshment rate, the issues gatibe

The ‘Multi-stage Trickle & Flip’ approach, proposéud the next Section, applies
additional intermediate real-time areas in ordemver the listed drawbacks of the
‘pure’ ‘Trickle & Flip’. The main focus is put oreducing the refreshment rate to get
closer to real-time.

D1 is being fed from the source and has the meshfdata

Copy D1 to D2

Flip D2 and D3
Now the real-time partition D3 has fresh data; raltyn the latency is not greater
than of the actual refreshment rate

Fig. 5. An example. One iteration of a ‘Trickle & Flip’ &dling (according to Fig. 4). D1 and
D2 are staging areas, D3 is the real-time patieDW

3 Multi-stage Trickle & Flip

3.1 The Main Idea

For the pure ‘Trickle & Flip’, if the cycle timege@as frequent as of several minutes,
this could put a heavy burden to querying, so o dhd-users working on real-time
data.

To overcome this, we propose ‘Multi-stage TrickleRsip’ approach (Fig. 6) by
adding additional intermediate stages to the systhos mitigating the competition
between loading and querying processes. In paaticubal-time data is divided into
two (or potentially more) subpartitions, each orithva different latency (and thus,
also amount of stored data).

The main objective of the new approach:

— Collisions between data loading and querying a@ivishould be reduced.

3.2. Setup and Operation

Evolving the approach of ‘Trickle & Feed'’ is basauthe following assumptions:
— Adding data to a smaller table (i.e., with lessajlé faster;
— Updating last changes to a table is faster thaningakill copy of the last

version.
OLAP
\ 4 A\ 4
N : N X Data
Source H". Staging D". Staging warehouse
database tables 1 tables 2
| R1 R2
ETL 4
A\ 4 \ 4 \ 4
M.
Staging
tables 0 H', D'. W
real-time real-time Static data
data : data :

Fig. 6. Multi-stage Trickle & Flip with one intermediatevel. In partition names, a letter ‘M’
stands for minute, ‘H’ stands for hour, ‘D’ starfds day. Data warehouse consists of partitions
H, D, and W, while M, H’, and D" are staging péastis. R1 — the first stage refreshment rate,
e.g., 5 minutes, R2 — the second stage refreshmemter.g., 1 hour

Construction of ‘Multi-stage Trickle & Flip’ infrasucture (Fig. 6):

— DW is represented by static data (W) and two (depizally more) real time
partitions (D and H). Each of real time partitiosglesigned to contain a dif-
ferent degree of amount of data (e.qg., of thedagtor the last hour);

— The staging area M is continuously fed with thersewata;

— There are two additional staging areas (for eadhefeal-time partitions) —
D" and H® which are not affected by querying, thlvgays available for load-
ing activities;

— For both stages, refreshment with two differentregiment rates is per-
formed (See the algorithm in Fig. 7 for the firsige refreshment: the same
algorithm suits second stage refreshment with pararsR2, H, D, D. For
simplicity of description, it is assumed that refiment rates R1 and R2 are 5
minutes and 1 hour respectively;

— There are 3 possible levels of querying: 1) W, 2)W3) W+D+H (i.e. of
latencies of 1 day, 1 hour, or 5 minutes respelglive

An example of refreshment with this methodologgiisen in Fig. 8.

3.3. Benefits and Issues

The ‘Multi-stage Trickle & Flip’ approach reducesaunt of data to be copied and
possible collisions between loading and queryingyities. A brief comparison be-
tween the two approaches is given in Table 1.

ALGORITHM multiple_trickle_and_flip_refresh (R1, M, H', H)
H — real-time partition for the current hour
M, H' — staging partitions with the same data format as W (Fig. 6)
R1 —first stage refreshment rate (e.g., 5 minutes)
M is being continuously (or in a microbatch mode) fed from the source
BEGIN
Do Every R1 % e.g., every 5 minutes
Add Mto H®
Empty M
If H is available % not locked by querying
AddH toH
Empty H*

Fig. 7. The first stage DW refreshment algorithm using HiAstage Trickle & Flip’ (related to
Fig. 6).H will typically contain the data of the current mdwith latency of 5 minutesH™ will
typically be empty unlesd is not available for some time — in this c&bewould contain one
or several portions of 5 minutes data. The algorith visualized in Fig. 8. Exactly the same
algorithm suits the second stage, but with param&®2, H, D", Drespectively.

The summary obtained features of the new approach:

— Total amount of data copying is reduced;

— Collisions between data loading and querying a@ivihave been reduced;

— By advancing the querying system (e.g., balanciegds for queries with a
certain latency, separate caching for each stégsgtcollisions would have
been more reduced;

— The approach is open to additional stages. Havyapgagpriate querying tools
available this could significantly help to approaake real-time refreshment.

The main technical issue of the methodology is exdbility menace for query in-
tegrity if data is temporarily stored in the stagiarea waiting for the appropriate
partition (see step #4 in Fig. 8); for the purei¢kie & Flip’ this will simply cause
higher latency.

The main challenge of the approach is that of § gemplicated multi-stage query-
ing system. However the case is not “over-complexiyeover, multi-stage querying
is nothing new to have come with this approacho #e pure ‘Trickle & Flip’ needs
such in order to combine static data with real-tida&a. Such querying tools and
methodologies are already available. [8] descr#vesmilar principle in generating
reports on a data warehouse of multiple versiars @tages, in terms of this paper).

5 Conclusion

The data warehouse refreshing approach of ‘Muiist Trickle & Flip’ is pro-
posed to mitigate the competition between the logdind querying processes when
trying to approach real-time operation. It is dasidy as an extension to the well
known principle of ‘Trickle & Flip’. Although the ethodology doesn't directly cover
all the areas of ETL and querying, still it regsiradditional engineering efforts to
obtain the maximum benefits, in particular, thobguerying mechanism:

— Separate caching for each stage;
— A mechanism to balance needs for higher latencytlamtbading process.

M is being fed from the source and has the frestlatst of the last 5 minutes; nar-
mally, H™ is empty unless H is unavailable for saimge due to querying. H contains
the data of the last hour:

M H
Copy Mto H’
Empty M
M H
L

If H is available then copying is performed furtherto H
Now the real-time partition H has fresh data; ndlyn#he latency is not greater than
of 5 minutes:

M H

If H is unavailable (due to querying activities), id likely to contain more then one
portion of M (while waiting for H)

M

Fig. 8. An example. One iteration of a ‘Multi-stage Triek& Flip’ loading; the first stage
(according to the schema in Fig. 6 and the algorith Fig. 7). M and H' are staging areas, H is
the first real-time part of the DW. The same wag bading is performed in the second stage.

Acknowledgements. This work has been supported by ESF project No.
2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044.

References

1. Jarke, M., Lenzerini, M., Vassiliou, Y.: Panos Mhadis. Fundamentals of Data Ware-
houses. Springer Verlag, 2nd, rev. and extendedX¢d.(2003)

2. Inmon, W. H., Terdeman, R. H., Norris-Montanari,ahd Meers, D.: Data Warehousing
for E-Business, J. Wiley & Sons (2001)

3. Santos, R.J., Bernardino, J.: Real-time Warehouseihgddethodology. Proceedings of
the 2008 international symposium on Database eagimg & applications (IDEAS '08),
ACM, New York, NY, USA (2008)

4. Langseth, J.: Real-time data warehousing: Challeagdssolutions, DSSResources.COM,
http://dssresources.com/papers/features/langsegisésh02082004.html (2004)

5. Jorg, T., Dessloch, S.: Near Real-time data warehgussing state-of-the-art ETL tools.
Enabling Real-Time Business Intelligence, Lecturegdoh Business Information Process-
ing, Volume 41. ISBN 978-3-642-14558-2. Springer{sgHeidelberg (2010)

6. Kimball, R., Caserta, J.: The data warehouse ETLkibdPractical techniques for extract-
ing, cleaning, conforming, and delivering data.rJgYiley & Sons (2004)

7. Kimball, R.; Ross, M.; Thornthwaite, W.; Mundy, J.; dger, B.: The Kimball Group
Reader: Relentlessly Practical Tools for Data Warsimguand Business Intelligence. John
Wiley & Sons (2010)

8. Solodovnikova, D.: Building Queries on Multiple Vienss of Data Warehouse. Proceed-
ings of the Eighth International Baltic Conferenc&S 2008), Tallinn, Estonia, pp. 75-
86 (2008)

