
Baltic J.  Modern Computing, Vol. 1 (2013), No. 3-4, 161-185 

Genetic algorithms and VRP: the behaviour of a 

crossover operator 

Gintaras VAIRA and Olga KURASOVA 

Vilnius University, Institute of Mathematics and Informatics, 

Akademijos St. 4, LT 08663, Vilnius, Lithuania 

Gintaras@vaira.net, Olga.Kurasova@mii.vu.lt 

Abstract: In the paper, we investigate the crossover operators for a vehicle routing problem where 

only feasible solutions are taken into account. New crossover operators are proposed that are based 

on the common sequence in the parent solutions. Random insertion heuristic is used as a 

reconstruction method in a crossover operator to preserve stochastic characteristics of the genetic 

algorithm. The genetic algorithm together with the new crossover operators can be applied to 

different VRP problems or other problems that can be expressed as a graph and depend on a 

sequence of elements. The proposed crossover operators are compared with other crossovers that 

deal with feasible solutions and insertion heuristics. 

Keywords: Vehicle routing problem, constraints, genetic algorithms, crossovers, insertion 

heuristic. 

1. Introduction  

In recent years, a vehicle routing problem (VRP) attracts much attention due to the 

increased interest in various geographical solutions and technologies as well as their 

usage in logistics and transportation. More and more logistic companies try to organize 

deliveries of goods better by enabling various today’s technologies proposed. It can be 

various logistic systems coupled with widely used positioning systems, etc. One of the 

most important parts of a cost is a better organization of routes by solving a vehicle 

routing problem. For example, a better organization of fleet routes in various distribution 

areas – delivery of post, supply delivery to markets, fuel delivery to gasoline stations, 

etc. – can save fuel, money and/or time that can be used for new customers. The 

variations of VRP exist depending on the additional parameters and constraints; for 

example, a vehicle routing problem with time windows (VRPTW), with pick-up and 

deliveries (VRPPD), with multiple depots (MDVRP), etc. Typical VRP defines 

constraints that should be satisfied in solution: to ensure that all customers are definitely 

visited, to ensure that a customer is visited only once per vehicle route, to prevent 

overload of vehicles. The defined constraints should not be violated in a final solution.   

One of the heuristic approaches dealing with VRP is a genetic algorithm (GA). 

Genetic algorithms are stochastic methods based on natural selection and genetics. They 

work with individuals, sometimes also called chromosomes, each representing a possible 

solution to a given problem. GA typically works with the initial population of solutions; 

with each new generation GA creates a new potential offspring, based on the selected 



162  G. Vaira and O. Kurasova 

 

individuals from the previous generation using a set of stochastic transition operators. 

The iterative process of generations and evaluation of individuals continues until a 

sufficient stop criterion is met. 

The success of the genetic algorithm depends on a couple of factors: selective 

pressure and diversity maintenance. These factors play an important role in the genetic 

algorithm, where the selective pressure describes intensification of search for a solution 

in each next generation by choosing better individuals for reproduction, and the diversity 

maintenance is responsible for having a non-homogeneous population. The diversity 

maintenance depends on the overall genetic algorithm: on the selection operator, on the 

crossover and mutation operators, and also on other approaches for population 

management. The designed genetic operators can either increase or reduce diversity in 

population, so the success of the genetic algorithm depends on the selected operators. 

Although all the operators in genetic algorithms are important and influence the 

efficiency of the algorithm as well as the behaviour of any other operator, in this 

research, we focus on genetic crossover operators used for solving VRP.  Genetic 

operators can be specially designed for a specific problem and can produce an 

inadequate result when they are applied to different problems. Although, problem-

specific genetic algorithms produce a more accurate result, the aim of this research is to 

design genetic operators that could be applied to a larger group of vehicle routing 

problems. 

The rest part of the paper is organized as follows. Section 2 describes a VRP problem 

and constraints. In Section 3, the main principles of genetic algorithms and genetic 

algorithm approaches to VRP are reviewed. Crossover operators that deal with feasible 

solutions are reviewed in Section 4, where new crossover operators are proposed as well. 

Section 5 presents the experimental results. The last section concludes the paper. 

2. Vehicle routing problem 

VRP is a general name given for a class of problems, in which a set of vehicles services 

a set of customers. This statement was first defined by Dantzig and Ramser (1959). VRP 

is a generalization of a travelling salesman problem (TSP), where only one traveller is 

taken into account. The TSP problem is defined as a set of cities, where a single traveller 

needs to visit all of them and return to the starting city. The objective of the TSP 

problem is to find the shortest route. 

The vehicle routing problem typically is described as a graph G = (N, E) and a set of 

homogeneous vehicles V = {v1, …, vt}, where t is the number of vehicles. The graph G 

consists of the nodes N = {n0, n1, ..., nk}, where n0 is a depot and N\{n0} are k customers 

that need to be serviced, and edges E = {eij}, where i j, 0<=i<=k, 0<=j<=k, eij=(ni, nj). 

Each vehicle that services customers starts the travel from depot and finishes it in the 

depot as well. The objective of the typical VRP problem is to find the solution, at first, 

minimizing the total vehicle number required, and secondly, minimizing the length of 

the total travelled path (Dantzig and Ramser, 1959; Jih et al., 1996; Potvin and Bengio, 

1996; Tan et al., 2001; Jung and Moon, 2002; Ombuki et al., 2002; Jih and Hsu, 2004; 

Alvarenga et al., 2005; Ombuki et al., 2006; Yeun et al., 2008). For the set E, the cost 

matrix D is defined, where dij is the cost of the edge eij=(ni, nj), and dii = 0. Usually the 

VRP problem is treated as symmetric, where dij = dji. In the real world problem, the cost 

matrix is asymmetric and needs to be calculated from geographic data by using the 

shortest path algorithms. Moreover, if a vehicle set is not homogeneous, some roads can 



 Genetic algorithms and VRP: the behaviour of a crossover operator 163 

 

be forbidden for certain vehicles and allowed for others. The different shortest path can 

exist for a different vehicle type, so a different matrix needs to be calculated for all the 

different vehicle types. A review of various speed-up techniques for the shortest path 

problem can be found in Vaira and Kurasova (2010, 2011). 

2.1. VRP and constraints 

The typical VRP problem can be extended by adding additional constraints and other 

parameters to the problem. The MDVRP problem includes additional depot nodes and 

CVRP includes load capacity limitation for a vehicle. VRP with time windows 

(VRPTW) is an extension, where time window constraints are added. The time window 

constraint defines a time frame in which a customer can be serviced, i.e. loading or 

unloading of a vehicle. A vehicle may arrive earlier, but it must wait until the start of the 

service is possible. The VRP problem can be extended with some additional constraints, 

like driver working hours, time, required for a driver to take a rest, etc. Similarly, 

depending on additional parameters, other variants of VRP problems are defined. In 

Yeun et al. (2008), particular mathematical formulations can be found for each VRP, 

VRPTW, VRPPD, CVRP problem, where each formulation is based on a customer set, 

represented as nodes in a graph. Jih and Hsu (2004) proposed the problem definition, 

based on transportation requests as tasks to be completed. 

To generalize a VRP problem, it can be divided into the following components: 

 data, used in the problem; 

 tasks, defined to be accomplished; 

 constraints that should be satisfied; 

 objective of the problem; 

Data definition includes the graph G = (N, E), which consists of the nodes N and 

edges E. The data definition also includes a set of vehicles V = {v1, …, vt}. The set of 

nodes can be divided into subsets of a) Nd – depots, b) Nc – customers, c) No – other 

nodes that can be divided into rest areas, gasoline stations, etc. For data definition, a start 

position is assigned to each vehicle vi, where the initial node can be marked as ni
init

. 

Additional data, like drivers and their properties or types of the goods, can be defined 

within the problem. 

Tasks, similarly as in Jih and Hsu (2004), define a set of targets to be achieved. Let 

us define a set R = {r1, …, rq} as a set of q requests and T = {t1, …, tp} as a set of p tasks 

to complete requests. Each request ri can be expressed via a set of tasks ri = { ti1, ti2,...}, 

where tij  T, |ri| > 0, ri R,  r1  …  rq =  and r1  …  rq = T. The main 

difference between the request and task is that the task can be processed one at a time by 

a single vehicle and the requests may be processed in parallel. The task can have other 

smaller subtasks, in such a way granularity increases, however, for VRP problems, the 

task does not require to be split to smaller tasks, if it means “to be processed one at a 

time by the vehicle”. In the VRP problem, each task ti is defined as ti = (ni
start

, ni
end

), 

where the node ni
start

  N is a start node of the task ti and ni
end

  N is the end node. To 

complete the task ti, at first, a vehicle needs to arrive to the node ni
start

 to start service, 

and then to complete service at the node ni
end.

. 

For VRP problems that deal with a delivery of cargo, the request can be defined as 

ri = {ti
+
, ti

-
}, where ri is a request to deliver cargo from one place to another and to 

complete it, tasks ti
+ 

(to load cargo at a specific place) and ti
-
 (to unload cargo at a 

specific place) have to be performed. The properties of cargo are defined for each 



164  G. Vaira and O. Kurasova 

 

request.  Let us define a function w(ri) that evaluates the cargo capacity value wi = w(ri). 

Tasks in the delivery problem can be defined as ti
 

= (ni
start

, ni
end

, wi)  for 

loading/unloading of wi at the node ni
start

 = ni
end

. Usually VRP defines the return to the 

depot tasks T
end

 ={t1
end

, …, tt
end

} R, tvi  T. An example of the task that starts and 

ends at different places could be found in the taxi problem, where a service of each 

customer starts at pickup place and ends at the destination place. 

The VRP target is to complete tasks by using vehicles.  Let us define a single 

solution of the VRP problem as x ={s1, …, st}, where sj = (tj1, tj2, …), tji T, 

s1  …  st =  and s1  …  st = T. sj defines a sequence of tasks assigned to the 

vehicle vj  V and |x| |V|.  Let us define a function Fr(x) that evaluates the solution x for 

incompleteness of requests and fr(x) that evaluates a single request for task 

incompleteness. 

 

 All the requests are completed, if Fr(x) = 0. 

Constraints define restrictions to the problem that usually reflect real life situations. 

Let us define a set of constraints C, where c  C defines a single constraint. The 

constraints can be defined for a task (i.e. time window), for a vehicle (i.e. capacity), for a 

cargo, etc.  One of the constraints of the delivery problem (VRPPD) is that ti
+
 needs to 

be completed before ti
-
 or return to the depot task should be completed after all the other 

tasks. So, the constraint can define the order of tasks. Let us define a function Fc(x) that 

evaluates violation of constraints in the solution x, and fc(x) that evaluates violation of 

the single constraint c C: 

 

The solution x does not violate any constraint, if Fc(x) = 0. 

Objective. The objective of typical VRP is to minimize the number of the used 

vehicles and then to minimize the length of the total travel path. So, the objective is, at 

first, to minimize the function fv(x), then fd(x), in addition, the equalities Fc(x) = 0 and 

Ft(x) = 0 need to be satisfied: 

 

 



 Genetic algorithms and VRP: the behaviour of a crossover operator 165 

 

 
 

Different objectives could include different minimization/maximization functions, 

i.e. a real life problem could be defined, where the feasible solution that completes all 

the tasks is not possible. The objective of such a problem could be to find a solution, 

where the maximum number of requests is completed. 

3. Genetic algorithm approaches for VRP 

3.1. Main principles of the genetic algorithm 

Genetic algorithms are based on ideas of evolution theory (Holland, 1975). The main 

principle here is that only the fittest entities survive (Reid, 2000; Jung and Moon, 2002; 

Lukasiewycz et al., 2008). A genetic algorithm can be divided into several sub-parts that 

are used in this algorithm: representation, fitness function evaluation, initialization, 

selection, recombination (crossover and mutation), termination. The whole genetic 

algorithm process is described in Fig. 1.  

 
1. The initial population is created, where each individual is expressed via defined 

representation; 

2. The fitness function is evaluated for the initial population; 

3. The subset of the population (so-called parents) is selected that will be used in 

recombination operators to generate offspring; 

4. The crossover operator is applied to parents to create new offspring; 

5. The mutation operator is applied with a certain probability; 

6. The fitness function is evaluated and the individuals with the worst fitness value 

are removed; 

7. If the stop criterion is not met, go to Step 3. 

Fig. 1. Steps of a genetic algorithm 

 

Representation. The classical genetic algorithm paradigm deals with the literal string 

encoded form of solutions, called chromosomes. A chromosome is the representation of 

a single solution of the problem and requires additional encoding/decoding steps to be 

defined in the algorithm. Genetic algorithm approaches can be divided into two sets: 

algorithms that are applied to the VRP problem represented as a chromosome, and 

algorithms that skip the encoding/decoding step. In genetic algorithms, where 

encoding/decoding is bypassed, a single solution is usually called individual. The TSP 

problem has a single constraint – all cities should be visited. The solutions of the TSP 

problem are vectors of the nodes: 

 
A single solution within a problem can be defined as xtsp  Stsp, where Stsp is the 

whole search space of the TSP problem and |S| = k!. Each TSP solution can be easily 

encoded as a queue of indexes (chromosome): 



166  G. Vaira and O. Kurasova 

 

Such encoding can be useful for any problem that can be expressed as TSP, for 

example in computer wiring, scheduling of jobs on a single machine, etc. (Deep and 

Adane, 2011). However, it is worth mentioning that such a representation does not hold 

any additional information. 

Population and initialization. In initialization, the initial set of chromosomes, also 

called as initial population, is created. The size of initial population is important for the 

overall genetic algorithm. A small size of the initial population can lead to only a local 

optimum result, while a larger initial population gives a higher probability that the global 

optimum will be found, however, computation time increases (Reid, 2000). While the 

TSP problem is defined as a complete graph, usually the initialization is done by 

randomly selecting a node and assigning it to the route. 

Evaluation and selection for reproduction. The selection operator is used to identify 

chromosomes which will be used in reproduction and will survive in the next generation. 

Different techniques can be used in selection operators, however, usually a natural 

selection process is simulated, where the “strongest” individuals are used in 

reproduction. One of the methods for selection is called Roulette Wheel. The name 

explains the method: a wheel is divided into parts according to the fitness of the 

individuals in population, where better individuals get a larger part of the wheel and the 

worst individuals get a small part of the wheel. So, the probability to be selected is 

directly proportional to the fitness value. When the wheel is spinning, a pin on the wheel 

will most probably point to a better individual. The individuals with a higher fitness 

value have a higher probability to be selected for reproduction, and vice versa. 

The second method for selection is called Ranking. In the Ranking method, all 

individuals in population are sorted according to the fitness value f(x) to assign ranks, 

where the individual with a better fitness value gets a higher rank. In TSP, usually f(x) 

defines the length of the total path travelled, however, this function can include 

additional characteristics and measurements in order to keep individuals in the 

population.  If in the Roulette Wheel method the fitness value is used when assigning a 

probability to be selected, in the Ranking method individuals are selected proportionally 

to the rank. 

Another method for selection is called Tournament Selection. This method uses 

characteristics from the Ranking method, but, in contrast to it, Tournament Selection 

ranks only a subgroup of individuals.  At first, two subgroups from a population are 

selected. Each subgroup must contain at least two individuals. The individuals are 

ranked within a group like in the Ranking selection operator. The best individual from 

each group is selected for reproduction, and the worst individuals are chosen to leave the 

population. To generate l new offspring in each iteration, assuming that two new 

offspring will be generated from two selected parents, l subgroups have to be selected 

from the population (Alvarenga et al., 2005).   

Recombination. An important part of the genetic algorithm is recombination 

operators. The crossover operator simulates the reproduction between two individuals, 

where the created offspring inherit some characteristics from parent individuals.  Many 

crossover and mutation operators exist that operate with a chromosome encoded as a 

literal line of symbols or numbers. The list of common crossovers used for solving TSP 

as well as for solving the VRP problem is as follows (Jih et al., 1996; Ombuki et al., 

2002; Tan et al., 2006; Kumar et al., 2012): 

 Partially matched crossover (PMX), 

 Cycle crossover (CX), 

 Ordered Crossover (OX), 



 Genetic algorithms and VRP: the behaviour of a crossover operator 167 

 

 Uniform Crossover (UX), 

 Uniform Order Crossover (UOX), 

 Edge Assembly Crossover (EAX), 

 Merge crossovers (MX1, MX2), etc. 

Crossovers listed above produce an encoded chromosome or chromosomes as a 

result, that need to be decoded for evaluation. In Jih et al. (1996), we can find a review, 

where the Uniform Order Crossover is mentioned as a good approach for solving VRP. 

It is an analogue of the Uniform Crossover translated into an order-based form: 

1. a binary string of the same length as parent chromosomes is generated; 

2. the first intermediate offspring preserves nodes from the second parent, 

where the generated string contains “1”; 

3. permute nodes from the second parent where a binary string contains “0” in 

the same order as they appear in the first parent; 

4. fill these permuted elements in the gaps of the first intermediate offspring; 

5. switch the parents and perform the steps 2 – 4 to create the second offspring 

(Jih et al., 1996). 

Figure 2 provides an example of a uniform order crossover. 

 

Binary string: 0  1  1  0  1  1  0  0  

1
st
 parent: 1  2  3  4  5  6  7  8  

2
nd

 parent: 3  5  1  8  4  7  2  6  

Intermediate offspring  

1
st
 offspring: –  5  1  –  4  7  –  –  

2
nd

 offspring: 1  –  –  4  –  –  7  8  

Generated offspring:  

1
st
 offspring 2  5  1  3  4  7  6  8  

2
nd

 offspring 1  3  5  4  2  6  7  8  

Fig. 2. Uniform order crossover (UOX) 

 

A mutation operator is used with intention to prevent getting stuck in the local 

optimum and increase a probability to find the global optimum (Hong et al., 2002). In 

the mutation operator, a new offspring is created from the selected single solution by 

changing some characteristics within it. In the genetic algorithm, crossover and mutation 

operators are applied by a predefined probability. We can find the values for these 

probabilities proposed in Srinivas and Patnaik (1994), Hong et al. (2002). In the adaptive 

probability approach, the probabilities are adjusted during computation depending on the 

current population characteristics, flow of the computation and other parameters. The 

simplest mutation operator extracts a single gene (an element of the chromosome) and 

places it back to the chromosome by randomly choosing a new location (Potvin and 

Bengio, 1996). 

Diversity maintenance and selective pressure. Two important factors of the genetic 

algorithm are population diversity and selective pressure. These two factors are related: 

if the selective pressure is increasing, the population diversity decreases and vice versa. 

The selective pressure is a task of the selection operator. Too-weak selective pressure 



168  G. Vaira and O. Kurasova 

 

can lead to ineffective search. The selection operator as well as other operators 

influences overall diversity of population. A good performance is achieved, while 

maintaining the diversity of population as long as possible. The mutation is important in 

the variation of individuals, when the population becomes homogeneous (Srinivas and 

Patnaik, 1994). The population diversity can also be maintained by increasing the size of 

the population or by having greater mutation rates, however, the performance factor 

should be taken into account. Other techniques are also used. A common approach is to 

avoid duplicates in the population. It means that the generated offspring is not allowed in 

the population, if it is the clone of the existing individual. 

Termination. The genetic algorithms are stochastic methods that could run forever, if 

a termination criterion is not applied. A simple stop criterion could be the maximum 

computation time or the maximum iteration number. In Berger and Barkaoui (2004), 

iterations are counted from the last successful improvement of the best individual and 

the process is stopped, when the maximum limit is reached. The probability to improve 

the best individual decreases proportionally to the computation time. So, the number of 

iterations without improvement is directly proportional to the probability of 

improvement. A large value would increase the computation time and possibly a better 

solution will be found, while a low value will involve an early stop with a poor solution 

found. 

Many derivative GA approaches can be found in the literature, some of which 

include multiple populations, dynamically chosen genetic operators or any hybrids with 

other known heuristic approaches (Yeun et al., 2008). However, the main principles of 

the genetic algorithm remain the same. In the rest of the paper, we will investigate a 

genetic algorithm implementation for VRP. The main research presented here is based 

on crossover operators used for solving VRP, and their influence on the whole genetic 

algorithm. 

3.2. Genetic algorithm and VRP 

As already mentioned, VRP is a generalization of the TSP problem.  VRP includes 

additional components, i.e. fleet of vehicle, and additional constraints. An additional 

component of the problem can affect computation and even require to design the 

problem specific genetic operators. Genetic algorithm approaches to solve the VRP 

problem can be categorized according to the following features: 

 Representation. Solution in GA can be encoded as a chromosome 

(expressed as a literal string), or unencoded, where encoding of the solution 

within chromosome is not addressed. 

 Feasibility handling. Genetic algorithm operators can be designed to 

preserve the feasibility of individuals within a population or allow the 

generation of infeasible individuals. 

 An example of VRP solution, where 3 routes are used to service customers 

expressed as a chromosome is as follows: 

 

| ne1 ne2 … | nf1 nf2 … | ng1 ng2 …| 

 

The standard genetic operators can be applied to such a chromosome, however, such 

a representation does not hold any problem specific information and, depending on the 

encoding approach, the selected genetic algorithm can be ineffective. Different 

approaches for encoding the VRP solution can be found in the literature, i.e. in Thangiah 



 Genetic algorithms and VRP: the behaviour of a crossover operator 169 

 

et al. (1991), a chromosome representation based on the angles of vectors starting from a 

depot node is proposed, where the VRP problem is treated as a planar graph problem 

(Thangiah et al., 1991; Jung and Moon, 2002). Researches can be found that compare 

crossover operators designed to work with the chromosome representation (Jih et al., 

1996; Misevičius and Kilda, 2005; Kumar et al., 2012). 

For a constrained problem, there exist feasible and infeasible search spaces F and U. 

Let us define the whole search space S, then F S, U S, U F = S,  U F = .  

Approaches, where a solution is represented as a chromosome or where solutions are 

allowed to be generated in the infeasible search space U, require additional approaches 

for constraint handling. The following approaches are used to deal with the infeasibility 

in genetic algorithms: 

 Penalty. A penalty method is widely used in genetic algorithms for 

constrained problems. The main target is to add a significant value to the 

fitness value for the generated offspring that violate constraints. Two 

different functions can be applied to a solution depending on the search 

space to which the solution belongs: ff(x), where x  F, and fu(x), where 

x  U. The relation between these two functions can be defined via an 

additional function, called a penalty function, p(x): fu(x) = ff(x) + p(x). The 

penalty method is directly applied to the fitness value, where the highest 

benefit of the penalty function is to adjust the ranking mechanism in the 

population and increase the selective pressure on the feasible individuals 

 Repair. The second approach for feasibility handling is a repair method.  

The repair method defines the transition function y = R(x), where y is the 

repaired version of x, such that y F, and x  U. The repair of individuals 

can be used for evaluation only or to replace the previous (infeasible) 

individual. 

 Multi-objective. In a multi-objective approach, the constrained problem is 

transformed in to a multi-objective problem.  In Berger and Barkaoui 

(2004), Ombuki et al. (2006), Tan et al. (2006), the Pareto ranking method 

is used to solve the VRPTW problem expressed as multi-objective, where 

Pareto ranking, similarly to the penalty approach, is used to adjust the 

ranking mechanism of the genetic algorithm. 

Local route improvement algorithms are considered for a chromosome improvement 

as an additional step of the genetic algorithm. Multiple improvement algorithms are also 

considered in computation to better exploit their characteristics. The local route 

improvement is used to add additional intensification to the genetic algorithm with a 

view to increase the convergence speed (Potvin and Bengio, 1996; Jung and Moon, 

2002; Berger and Barkaoui, 2004; Nagata and Bräysy, 2009). In Jung and Moon (2002), 

usage of Or-opt, crossover and relocation methods together are investigated for the 

improvement of routes. Another known improvement algorithm, commonly used in VRP 

implementations is 2-opt, and also its generalization 3-opt and k-opt. 

In this research, we deal with the operators that preserve the feasibility of individuals. 

Encoding of a solution as a chromosome is not considered in this research. In the 

following section, we will mainly concentrate on crossover operators of the genetic 

algorithm that preserve feasibility. New crossover operators will be proposed and 

compared to other genetic algorithm approaches for the VRP problem. No additional 

repair method is considered to keep the solution in a feasible search space in the 

proposed crossover operators. 



170  G. Vaira and O. Kurasova 

 

4. Crossovers for VRP with constraints 

Genetic algorithm approaches that deal with infeasible individuals require additional 

approaches to intensify a search to a feasible search space. Usually these approaches 

require a specific improvement or repair methods to avoid situations, where repair of a 

single constraint can have a negative impact on other constraints. Another approaches 

are to avoid infeasibility in the created solutions.  

Depending on the defined data and constraints, a feasible solution that finishes all the 

tasks could not be possible to be created. Solutions are possible, where either some of 

the constraints are not satisfied or not all the tasks are completed. In this paper, solutions 

are treated to be feasible, if all the constraints are satisfied. However, the solution can be 

incomplete – not all the tasks are completed in the constructed solution. The objective 

requires to be extended to handle this approach: to find the solution that accomplishes a 

higher number of tasks. 

We have defined the problem solutions as a set of sequences constructed from the 

tasks. Such a definition differs from a widely used definition for VRP, where the 

solution is defined as a sequence of nodes visited by separate vehicles, where each 

sequence is called a route. Tasks are accomplished “travelling by the vehicle in the 

graph”. The sequence of nodes can be expressed via a sequence of tasks, where the 

solution does not have duplicated tasks. The sequence of tasks can be expressed via the 

sequence of nodes, however, the same node can be visited a couple of times per solution, 

if a couple of different tasks includes it. In this paper, the methods and algorithms, 

proposed by other authors, will be expressed by a sequence of tasks instead of the 

original expression – route of nodes. For a better explanation, sequence of tasks will be 

called a route of tasks. 

In Reid (2000), probability functions are defined to find a feasibility-preserving two-

point crossover for a linear constraint problem. However, for a highly constrained 

problem, where a feasible search space is reasonably small compared to an infeasible 

search space, only a half-feasible crossover with a single boundary point is discussed. 

Usually, in order to create feasible solutions, various approaches of construction 

heuristics are taken into consideration. Construction heuristics can include the 

minimization function and work as the stand-alone algorithms. Insertion heuristics are 

one group of construction heuristics, where the routes are constructed by inserting all the 

tasks one by one into the routes. In Alvarenga et al. (2005), Ombuki et al. (2006), a 

push-forward insertion heuristic (PFIH) is used to create an initial solution and also as 

part of the crossover operator. PFIH originally was defined for the VRPTW problem by 

Solomon (1987). PFIH starts by selecting the first task and forming the initial route from 

a depot. The algorithm inserts all the other tasks into the constructed route by 

minimizing the insertion cost function for each task. The concept “push-forward” 

originally means checking pushed-forward values of all the subsequent tasks in the route 

(Tan et al., 2001). In PFIH, the first task of the new route is identified deterministically, 

where the task to be inserted is the one that is distant from the depot, not too far from the 

last inserted task in the previous route, and that has an early time window. Other tasks 

are inserted by minimising the insertion cost by evaluating insertion of all the free tasks 

in all the existing insertion positions in the route. An important characteristic of PFIH is 

that insertion of the task is possible, only if no constraint is violated. 

When the insertion heuristic is used as a part of the crossover operator, it plays an 

important role in the general genetic algorithm approach: a random insertion can 



 Genetic algorithms and VRP: the behaviour of a crossover operator 171 

 

increase the diversity of the population, whereas usage of the minimization function in 

the insertion can give better results initially, but reduce the diversity. For further 

crossover operators, we define the following questions: 

 what information is taken from parents to create partial (or full) offspring? 

 which insertion approach is used to insert unassigned tasks back? 

 

Best Cost Route Crossover (BCRC), proposed in Ombuki et al. (2006), creates two 

offspring from two parents. For a better explanation, let us denote the parent solutions as 

xp1 and xp2, denote the offspring solutions as xo1 and xo2 and intermediate offspring 

solutions as x'o1 and x'o2. The defined crossover creates an offspring solution in the 

following steps: 

1. Ttemp = select a random route sr xp2, 

2. create a partial solution x'o1 = xp1\{t Ttemp}, 

3. create xo1 by inserting the task t Ttemp into x'o1, by randomly selecting a 

task from Ttemp and inserting a task with the minimal insertion cost. Tasks 

are inserted into the existing routes. If it is not possible to insert due to 

constraint violation, a new route is created, 

4. create xo2 by swapping the parent solution and repeating steps 1-3. 

The defined crossover operator takes a single parent, forms an offspring from it, 

partly destroys it and reconstructs it back (reconstruction is not the same as repair, 

where repair is used to create a feasible version of an infeasible solution). For the stage 

of destruction, Ombuki et al. (2006) proposed to use the second parent as a reference, 

where a single randomly chosen route provides information which tasks should be 

removed from the offspring solution.  A couple of cases can be noticed in such an 

approach: a) if a solution has a lot of small routes, a single route could include a small 

set of tasks, where removal of a small number of tasks from the solution could not give 

the expected intensification result; b) if the problem is defined only for a single vehicle 

(i.e. TSP), the resulting solution will have only one route and, in the destruction stage, 

the whole route will be destroyed. The first case can be solved by increasing the number 

of routes selected as references. However, the question, what useful information is 

shared between the parents and why this approach is better than random task remove, is 

not explained in Ombuki et al. (2006). The design of BCRC leads to a minimization of 

routes, because the nodes to be removed can form the route in the second parent 

solution, and there exist a probability that the whole route will be removed in the 

offspring solution. 

 

SBX. In Potvin and Bengio (1996), two crossover operators are proposed that repair 

the generated offspring by removing correlating tasks from it and reinserts them by 

minimizing the additional detour. The first crossover, called a Sequence-Based 

Crossover (SBX), selects two routes from the parent solutions and merges them by 

selecting a split place (break-point) in each route: 

1. x'o1 = xp1; 

2. select a random route sr1 from xp1 and a random route sr2 from xp2; 

3. create a new route snew by adding tasks from sr1 starting from the beginning 

till a randomly selected place; 

4. append tasks to snew from sr2 starting from a randomly selected place till the 

end; 

5. remove duplicates from snew if such exist; 

6. x'o1\ {t snew} – remove the tasks from x'o1 that belong to the new route snew; 



172  G. Vaira and O. Kurasova 

 

7. remove sr1 from x'o1, add t sr1 to Ttemp; 

8. add snew to x'o1; 

9. create xo1 by inserting the tasks t Ttemp to x'o1 by evaluating the insertion 

cost function; 

10. create xo2 by swapping the parent solution and repeating steps 1-9. 

 

RBX. The second crossover proposed in Potvin and Bengio (1996) is called a route-

based crossover (RBX). In this crossover, a route from one parent replaces one route 

from the second parent: 

1. x'o1 = xp1; 

2. select a random route sr2 from xp2; 

3. x'o1\ {t sr2} – remove the tasks from x'o1 that belong to the route sr2; 

4. remove a random route sr1 from x'o1, add t sr to Ttemp; 

5. add the route sr2 to x'o1; 

6. create xo1 by inserting the task t Ttemp to x'o1 by evaluating the insertion 

cost function; 

7. create xo2 by swapping the parent solution and repeating steps 1-6. 

Both crossovers, SBX and RBX, add some parts from both parents to the final 

solution. The first crossover merges two routes from the opposite parents, so it can be 

applied in the cases where parent solutions have only one route. If solutions have more 

than one route, the probability to select parent routes for a crossover, such that the 

created offspring were competitive in the population, decreases, when the number of 

routes increases. The operation of removing duplicates in the route might be insufficient. 

A merge of two routes at random positions can involve a violation of constraints in the 

offspring solution. For example, let us have a VRPTW problem, where time window 

constraints are defined for all tasks. Let us have a break-point selected in the first route 

sr1 after the task tr1,i, and a break-point selected in the second route sr2 before the task tr2,j. 

The new route constructed will connect two routes to the following route (tr1,1, …, tr1,i, 

tr2,j, …). The task tr2,j could have an early time window, then, since it was at the 

beginning of the route sr2, the time window constraint will probably be violated when the 

task tr2,j is added to the “late” position in the new route. An additional constraint check 

should be applied to avoid a constraint violation in the offspring. 

The crossover RBX preserves a feasibility in the offspring. If the parent routes are 

feasible, then the routes in the offspring remain feasible. Randomly selected routes in 

both individuals may have no common tasks, so the removal of duplicate tasks and 

removal of a randomly selected route can reduce the number of routes in the 

intermediate solution. So, this crossover has a possibility to minimize the number of 

routes. However, after the reconstruction the number of routes can still be increased. If 

solution has a larger number of routes, then the approach can be adjusted to take a larger 

number of routes from the second parent. However, there exists a limitation if there is 

only one route in the parent solution. 

 

LRX. The crossover used in Alvarenga et al. (2005) is similar to that of RBX 

described above, because it combines the routes from the parent individual by evaluating 

the number of tasks in the routes (let us call it Largest Route Crossover (LRX)). 

Originally, the genetic algorithm approach was defined to handle infeasibility as well. In 

the original crossover, infeasible routes are skipped in the offspring and added to the list 

of unassigned tasks. This crossover can also be applied to feasible solutions: 



 Genetic algorithms and VRP: the behaviour of a crossover operator 173 

 

1. Lr  =  is a list of routes; 

2. add r xp1 to Lr; 

3. add r xp2 to Lr; 

4. xo1 =  is the initial empty solution; 

5. rs  = select a route from Lr with the largest number of tasks; 

6. for r  Lr, r = r \{n rs} -  remove the tasks belonging to rs from all the 

other routes; 

7. add rs to xo1; 

8. repeat the steps 5-7 while Lr has routes with at least one task. 

The LRX crossover produces only one offspring. Stochastic PFIH was used as a 

reconstruction method to insert unassigned tasks in the LRX crossover. If in the 

deterministic PFIH, the first task (initial route) is found deterministically, in the 

stochastic PFIH, each new route is started by choosing an unassigned task randomly. By 

inserting routes with a larger number of tasks, the described crossover intensifies the first 

objective of the VRPTW problem. So, this crossover is designed for a special problem 

(or a special objective) and is not effective in the cases, where parent solutions have only 

one route. 

 

Reconstruction. All the crossovers described use an insertion heuristic for 

reconstruction of solutions. However, insertion approaches slightly differ in each 

crossover. In all of them, at first, tasks are inserted into the existing routes, if the 

constraints are not violated, and a new route created, otherwise. Such a method 

intensifies the route minimization objective of the VRPTW problem. Usually, in GA, 

intensification is a task of the selection operator and depends on a selective pressure. The 

usage of intensification in the crossover operator needs to be adequate to the 

intensification in the selection operator, otherwise, the crossover will, most probably, 

generate an offspring that will not survive in the population. 

Let us express the route of tasks as a graph Gr
T 

= (Tr, Ar), where the set Tr = {tr
init

, tr1, 

…, tr
end

}  defines the set of tasks assigned to the route, and tr
init

 represents the start of the 

route at the node nr
init

. Expression of route via tasks eliminates the possibility of 

duplicate entries, where the expression of a route via nodes could give the same node, 

visited a couple of times, if the same node is part of a couple of different tasks. The arcs 

from the set Ar connect the tasks: ari  Ar, ari = (tri, tr(i+1)), where tri is the start of the arc 

and tr(i+1) is the end. Insertion of the new task tm into the arc ari, means to: 

1. remove the arc ari from the set Ar; 

2. add the task tm to Tr; 

3. add two new arcs (tri, tm) and (tm, tr(i+1)) to the set Ar. 

An empty route (vehicle without tasks assigned) is still a graph with Tr={tr
init

, tr
end

} 

and Ar = {(tr
init

, tr
end

)} (Figure 3). The insertion process can be split into the following 

parts and intensification can be applied in both of them: 

 select a task for insertion; 

 select a place for insertion. 

The following approaches can be used for implementing the insertion heuristic: 

 Choose randomly a task and then search for the best arc to insert in. A 

random task selection is a stochastic approach that can be used to choose a 

task for insertion. This method does not affect overall intensification and 

corresponds to the general idea of the genetic algorithm being a stochastic 



174  G. Vaira and O. Kurasova 

 

approach. Usage of the minimization function then can be applied to arc 

selection. 

 Choose a random arc and then search for the task. It is the opposite 

approach to the previous one. 

 Search for a task and arc at the same time by evaluating the minimization 

function. The minimization function could also include evaluation of the 

vehicle and additional information that could help to identify the best task 

and the best place for the next insertion. 

 

Fig. 3. Insertion with the constraint check: a) partial solution and the task (dotted) to 

be inserted, b) identified arcs where a feasible insertion is possible, c) found arcs with a 

minimal insertion, d) newly constructed solution 

 
To select a place for the task insertion means to select an arc from the set of Aall (all 

the arcs in all the routes in the partial solution x'). For a feasible insertion, we have to 

evaluate the violation of all the constraints. Let us have a function fc(ai, tm) that checks 

the violation of all constraints, while inserting the task tm into the arc ai  x': 

 

The insertion of a task does not increase the constraint violation, if Fc(ai, tm) =0. To 

follow the objective of the VRP problem, the arc needs to be selected by minimizing the 

functions fv(ai, tm) and fd(ai, tm) that evaluate the difference of objective functions, while 

inserting the task tm into the arc ai. At first, the difference of the route number is 

evaluated and, in the second function, the difference of the route length is evaluated: 

 

In Figure 3, the overall insertion process with the feasibility check is presented, 

where filled circle represents a depot node, arrows represent arcs in the partial routes, a 

dotted circle represents the task tm selected for insertion, dotted arrows represent possible 

insertion arcs. 

In the following subsection, new crossover operators are proposed that are also based 

on insertion heuristics. However, apart from the insertion heuristics, the proposed 

crossover operators handle most of the negative aspects of the reviewed crossover 

operators and include another intensification approach. 



 Genetic algorithms and VRP: the behaviour of a crossover operator 175 

 

4.1. The proposed crossover operators 

The crossover operators, proposed in this paper, are based on the idea of a large 

neighbourhood search heuristic. The large neighbourhood search (LNS) heuristic 

belongs to the class of heuristics known as a very large scale neighbourhood search 

(VLSN) (Pisinger and Ropke, 2009). The main principle of the large neighbourhood 

search is as follows. For solution x F, a neighbourhood in the feasible search space can 

be defined as Nh(x)  F, where Nh(x) is a function that maps the solution x to a set of 

solutions. Neighbourhood algorithms are an iterative process that takes the initial 

solution x and, in each iteration, searches for the cheapest solution x' in the 

neighbourhood of x:  x'
 
= argminx'' Nh(x) f(x''). The solution x' replaces x by evaluating the 

acceptance function. An example of neighbourhood Nh(x) can be one of the local 

improvement approaches, i.e. 2-opt, where the 2-opt neighbourhood is a set of solutions 

that can be obtained by removing two edges in solution x and adding new ones to 

reconnect the route. In the large neighbourhood search, the neighbourhood is defined as 

Nh(x) = r(d(x)), where neighbourhood solutions can be found by applying, at first, the 

destroy function d(.) and then the reconstruction function r(.). Other than the genetic 

algorithm approaches, the large neighbourhood search maintains only two solutions: the 

best solution found x
b
 and the current solution x is used that takes part in the exploration 

of the neighbourhood. If x is found such that fa(x) < fa(x
b
), where fa(x) is the acceptance 

criteria function, x
b
 is replaced with a new solution: x

b
 = x. The effectiveness of LNS 

depends on the degree of destruction, where, if only a small part is destroyed, LNS can 

have trouble in exploring the search space, or can be involved in the repeated re-

optimization, if a very large space is destroyed (Pisinger and Ropke, 2009). The 

destruction method should be used such that explores the search space where the global 

optimum is expected to be found. 

The BCRC crossover, mentioned in the previous section, involves the destruction of 

the parent individuals to build offspring, but the exploration depends on the route from 

the second parent individual. The tasks in the route from the second individual could be 

assigned depending on their time window constraint. Thus, it means that the removed 

tasks can have a low probability to change their positions in the solution. Other 

crossovers (SBX, RBX, LRX) convey the union of the solutions, where some parts from 

both individuals are combined with the intention to find a better solution. Such 

crossovers explore only a small neighbourhood and only in the cases, where additional 

unassigned tasks are left during the recombination of parents. 

Other than the union crossover operators, the proposed crossover is designed to 

preserve common parts of the two selected individuals. The common parts could be the 

tasks assigned to the same vehicle, the tasks assigned to the vehicle starting from the 

same depot, or the tasks with the same cargo. By removing the tasks that do not belong 

to the common parts of solutions, the common neighbourhood of two solutions is 

identified. A size of the neighbourhood is inversely proportional to the size of the 

common parts. In the VRP problem, where the objective is to minimize the vehicle 

number and the path length, the sequence of tasks in the route is important. If the initial 

individuals in a genetic algorithm are created in a stochastic way, removal of the tasks 

that do not belong to the same sequence of the tasks, most probably, will remove the 

tasks that prolong the overall path, where long paths can lead to a larger number of 

routes. 

The target of the proposed crossover operators is to identify the common sequence in 

the parent individuals, preserve it in the intermediate solution and reconstruct it in the 



176  G. Vaira and O. Kurasova 

 

offspring individual. Two crossover operators (common arc crossover and longest 

common sequence crossover) are defined to handle the same sequence of the tasks in 

both parents.  Each crossover produces only one offspring from two parents. 

 The common arc crossover (CAX) preserves arcs in the first parent solution, if the 

corresponding arcs exist in the second parent solution, where the corresponding arc has 

the same start and the same end. 

 

Fig. 4. Common arc crossover: a) and b) parent solutions, c) intermediate solutions 

with highlighted arcs common in both parents 

 
The common arc crossover preserves the sequence between two tasks in the graph. 

The complexity of this crossover is O(p), where p is the total number of tasks in the 

problem. The example of behaviour of the first crossover is displayed in Figure 4, where 

a) and b) are parent solutions, and c) is the intermediate solution, where the common 

arcs from both parents are displayed with highlighted arrows. The arrows that are not 

highlighted are new arcs that connect the tasks according to their position in the first 

parent solution to form the route. The algorithm to find the common arcs in two parent 

solutions is as follows: 

1. x'o1 =  

2. Ttemp =  

3. for  t  xp1; 

4. if the task t is the start or the end of the common arc, add the task t to x'o1, 

otherwise, add the task t to Ttemp; 

5. continue from step 3) until all the tasks in xp1 are evaluated. 

6. create xo1 by inserting t temp into x'o1 by evaluating the insertion cost 

function. 

The Longest common sequence crossover (LCSX) is the second crossover operator, 

proposed in this paper.  It examines the two parent solutions by searching for the longest 

common sequences in all the routes. An example of the longest common sequence 

between two routes is displayed in Figure 5, where a) displays the first route with the 

indexed tasks in the route (literal string displays the indexed sequence); b) for all the 

tasks in the second route indexes are assigned according to the route in a); c) displays the 

longest common sequence solution example, where the solution is found by solving the 



 Genetic algorithms and VRP: the behaviour of a crossover operator 177 

 

longest increasing subsequence (LIS) (Schensted, 1961; Yang et al., 2005; Chan et al., 

2007) for the index line, identified in b). 

 

Fig. 5. The longest common sequence between two routes 

 
The longest increasing sequence presented in c) is not the only one, there exist 

different increasing sequences that have the same length as in c). All the possible longest 

increasing sequences are as follows: 

1 2 4 5 8 9 10 12 

1 2 4 5 8 9 10 13 

1 2 4 5 8 9 11 12 

1 2 4 5 8 9 11 13 

1 2 4 6 8 9 10 12 

1 2 4 6 8 9 10 13 

1 2 4 6 8 9 11 12 

1 2 4 6 8 9 11 13 

1 2 4 7 8 9 10 12 

1 2 4 7 8 9 10 13 

1 2 4 7 8 9 11 12 

1 2 4 7 8 9 11 13 

 

For LCSX, all the longest common sequences are identified and a single sequence is 

chosen randomly as the longest common sequence for the offspring. In the large 

neighbourhood search the parts of solution are destroyed by evaluating a single solution. 

In the LCSX crossover, some parts of solution are destroyed by evaluating the selected 

solution and another solution taken from the population. 

 



178  G. Vaira and O. Kurasova 

 

Fig. 6. Identification of the longest common sequence in all routes: a) and b) two 

parent solutions; c) the selected route from the first individual for evaluation; d) the 

routes in the second individual are identified that handle the same tasks as in the c) 

selected route; e) the route with the largest number of tasks is selected from the routes in 

d); f) the longest common sequence between the routes from c) and e) is identified 

 

In Figure 6, an example of finding common sequences among more than one route in 

a solution is presented. For each route ri in the first individual, the routes in the second 

individual are identified that handle at least one task belonging to ri (Figure 6, d)). Then 

the route with the largest number of tasks is selected (Figure 6, e)) and the longest 

common sequence between routes in c) and e) is found. In e), the removed routes could 

also be evaluated for the longest common sequence, however, search for the longest 

common sequence in all of the routes increases the complexity of the crossover. To 

avoid extra complexity, the longest increasing sequence is identified for the routes with 

the largest number of common tasks. The same method is applied to all the routes in the 

first individual to get the intermediate solution x'o1 (Figure 7): 

1. x'o1 =  

2. Ttemp =  

3. for ri  xp1; 

4. find the intersecting route rint xp2 that has the largest number of common 

tasks; 

5. SEQ = find the longest common sequence between the routes ri and rint; 

6. for  t  ri, if t exist in the sequence SEQ, add the task t into x'o1, otherwise, 

add t to Ttemp; 

7. create xo1 by inserting t emp into x'o1 by evaluating the insertion cost 

function. 

The CAX crossover preserves the sequence only for each the two subsequent tasks in 

the route, where the LCSX crossover preserves the longest common sequence between 



 Genetic algorithms and VRP: the behaviour of a crossover operator 179 

 

two solutions. In both crossover operators, if the route has one task, it is removed and the 

task is added to the list of unassigned tasks. The complexity of LCSX is O(p
2
) in the 

worst case including computation of the longest common sequence. 

 

Fig. 7. The longest common sequence crossover: a) and b) two parent solutions; c) 

the intermediate solution found by the crossover 

 
Insertion. A random insertion heuristic is chosen for reconstruction to preserve the 

stochastic approach of the genetic algorithm. A task is chosen from the list of unassigned 

tasks randomly and inserted into the route by evaluating the feasibility and minimising 

the insertion cost functions fv(ai, tm) and fd(ai, tm) defined in the previous section. If the 

crossover operators search for the common parts in the solutions, the random task 

insertion involves a diversification in a population. 

The proposed crossover operators preserve common parts in all routes. In most cases, 

the crossovers will create an intermediate offspring that has the same number of routes 

as in the parent solution. To minimize the number of routes, as it is defined in the 

objective, the number of routes should be reduced in the intermediate offspring by 

removing a randomly selected route. The last step of each proposed crossover is 

processed as follows: 

1. while fv(x'o1) > fv(xp) – , remove the randomly selected route from x'o1 and 

insert all the tasks from the route to Ttemp; 

2. create xo1 by inserting t emp into x'o1 by evaluating the cost functions 

f'v(ai,tm) and fd(ai,tm) 

In step 1), the value  can have values from 0 to fv(xp)-1, where xp is a parent solution 

participating in the crossover operation. If  = 0, the task will be inserted in the place 

with the minimal detour, however, the crossover will not try to minimize the number of 

routes. For the proposed crossover operators, the insertion function is used where   is a 

random value from the set {0,1}, if fv(xp)>1, and  = 0 otherwise. 

In the next section, the new crossover operators are compared to other crossover 

operators, described in this paper. 

5. Experimental evaluation 

The proposed crossover operators are implemented with the Java programming language 

in order to compare it with other crossover operators. The other crossover operators, 

described in the paper, are also implemented for comparison. For these crossover 

operators that use insertion heuristics, construction of solutions is the same as in the 



180  G. Vaira and O. Kurasova 

 

algorithm definition. For comparison of crossovers, other parts of the genetic algorithm 

are common: 

 Population initialization is performed by randomly selecting tasks for 

insertion and inserting them by evaluating the feasibility and minimising the 

cost. The same population is used for a single experiment with all the 

crossover operators. The population size is equal to 100. 

 For evolution strategy, the k-tournament selection of the size k = 2 is 

chosen. In each iteration 10 new offspring are created. 

 Mutation. To identify the features of a crossover better two groups of 

experiments are carried out. The first group of experiments does not involve 

the mutation operator. In the second group of experiments, the mutation 

operator is applied. The mutation operator used extracts 0.5z tasks from the 

solution and reconstructs the solution by the same reconstruction method 

that is used in the crossover, z is the random value within the range (0,1). 

Mutation is applied with the probability 0.15. 

 Computation is stopped, when the best solutions are not improved for 300 

iterations or when the maximum computation time (5 minutes) is reached. 

The experiments are carried out using the well-known Solomon instances of the 

VRPTW problem (Solomon, 1987), where all the instances have 100 customers, 

distributed over the geographical area. The Solomon problem consists of 6 different 

problem sets R1, R2, C1, C2, RC1, RC2. The nodes in the sets R1 and R2 are randomly 

distributed over the geographical area; in the sets C1, C2, they are located in 

geographical clusters; in the sets RC1, RC2, some nodes are located in clusters and the 

other ones are distributed randomly. The sets R1, C1, RC1 define the problems with a 

large vehicle capacity and large time windows. The sets R2, C2, RC2 define the 

problems with a small vehicle capacity and narrow time windows. 

For the evaluation of crossovers, we choose two problem instances from each set of 

problem. For each instance, the genetic algorithms with different crossovers are run 10 

times, and each time, a new initial population is created.  Computations are performed 

on a laptop PC with Intel Core 2 Duo 2.2 GHz CPU and 4GB RAM. Tables 1-2 

summarize the results, where computations are performed without applying the mutation 

operator, and Tables 3-4 summarize the results, where computations involve the 

mutation operator. In Tables 1 and 3, the best results identified are presented, and, in 

Tables 2 and 4, the averaged results for each crossover operators are presented. The 

results in the tables show the difference from the best known solutions, reported in the 

papers (Solomon, 1987; Potvin and Bengio, 1996; Tan et al., 2001; Jung and Moon, 

2002; Ombuki et al., 2002; Berger and Barkaoui, 2004; Alvarenga et al., 2005; Ombuki 

et al., 2006; Tan et al., 2006; Garcia-Najera and Bullinaria, 2011). The results are 

displayed in the form “difference of the total path length / difference of the route 

number” Problem instances used in the experiments and the best known solutions are as 

follows: 

 C104 – vehicles 10, total path length 824.78; 

 C106 – vehicles 10, total path length 828.94; 

 C204 – vehicles 3, total path length 590.6; 

 C207 – vehicles 3, total path length 588.29; 

 R101 – vehicles 19, total path length 1645.79; 

 R105 – vehicles 14, total path length 1377.11; 

 R205 – vehicles 3, total path length 994.42; 



 Genetic algorithms and VRP: the behaviour of a crossover operator 181 

 

 R209 – vehicles 3, total path length 909.16; 

 RC101 – vehicles 14, total path length 1696.94; 

 RC107 – vehicles 11, total path length 1230.48; 

 RC201 – vehicles 4, total path length 1406.91; 

 RC208 – vehicles 3, total path length 828.14; 

 
Table 1. The difference between the best results, found by using crossover operators 

without applying mutation, and the best known solutions 

 BCRC RBX LRX CAX 

(proposed) 

LCSX 

(proposed) 

C104 22.27/0 22.98/0 907.52/0 0/0 0/0 

C106 0/0 0/0 886.69/2 0/0 0/0 

C204 0/0 10.61/0 708.94/1 0/0 0/0 

C207 0/0 8.49/0 696.19/1 0/0 0/0 

R101 46.0/0 46.3/0 186.5/0 17.32/0 7.74/0 

R105 30.35/1 58.77/1 286.72/1 10.38/0 0/0 

R205 46.04/0 82.61/0 698.16/1 73.010/0 27.32/0 

R209 34.35/0 61.04/3 485.63/1 41.92/0 19.43/0 

RC101 -8.5/1 30.55/1 125.31/2 -52.68/1 -53.07/1 

RC107 62.43/0 54.62/1 438.83/2 268.73/1 3.81/0 

RC201 22.61/0 34.94/0 724.57/1 10.86/0 6.61/0 

RC208 39.38/0 70.4/0 922.42/1 18.1/0 4.22/0 

 

Table 2. The difference between the averaged results, found by using crossover 

operators without applying mutation, and the best known solutions 

 BCRC RBX LRX CAX 

(proposed) 

LCSX 

(proposed) 

C104 61.88/0 61.03/0 1292.83/0 20.16/0 8.98/0 

C106 47.53/0 91.65/0.1 1043.65/2.2 0/0 0/0 

C204 1.69/0 27.96/0 860.58/3 0/0 0/0 

C207 0/0 23.48/0 1078.35/1 0/0 0/0 

R101 83.64/0.3 83.56/0.5 194.31/0.5 37.58/0.3 15.93/0 

R105 73.68/1 134.69/1.1 322.18/1.9 77.18/0.3 1.94/0.6 

R205 80.76/0 122.82/0 722.36/1 119.46/0 65.15/0 

R209 58.99/0 110.87/0 646.42/1 75.48/0 44.18/0 

RC101 33.07/1.7 98.23/1.5 186.03/2.1 4.4/1.1 -38.89/1.3 

RC107 71.15/0.8 1253.52/1 488.63/2.9 303.1/1.1 25.9/0.5 

RC201 76.01/0 128.65/0 894.62/1.1 93.9/0 30.99/0 

RC208 59.51/0 98.21/0 982.84/1 63.43/0 17.69/3 

Averaged 

CPU time, s 

32.82 94.84 7.37 82.99 35.75 

 



182  G. Vaira and O. Kurasova 

 

Table 3. The difference between the best results, found by using crossover operators and 

mutation also being applied, and the best known solutions 

 BCRC RBX LRX CAX 

(proposed) 

LCSX 

(proposed) 

C104 0/0 15.17/10 94.75/0 0/0 0/0 

C106 0/0 0/0 0/0 0/0 0/0 

C204 0/0 0/0 0.57/0 0/0 0/0 

C207 0/0 0/0 0/0 0/0 0/0 

R101 8.51/0 8.97/0 36.58/0 6.78/0 5.22/0 

R105 0.66/1 106.17/0 56.61/0 10.38/0 0/0 

R205 45.69/0 38.91/0 99.77/0 28.97/0 38.83/0 

R209 25.19/0 44.51/0 62.35/0 13.01/0 6.0/0 

RC101 –40.5/1 –24.87/1 -14.91/1 -40.62/1 -53.95/1 

RC107 28.92/0 32.35/1 109.31/0 5.53/0 3.53/0 

RC201 22.83/0 56.88/0 99.72/0 6.61/0 8.09/0 

RC208 32.49/0 45.69/0 128.38/0 17.47/0 0.87.01/0 

 
Table 4. The difference between the averaged results, found by using crossover 

operators and mutation also being applied, and the best known solution 

 BCRC RBX LRX CAX 

(proposed) 

LCSX 

(proposed) 

C104 31.95/0 61.83/0 313.5/0 0.19/0 0/0 

C106 29.71/0 34.78/0 3.81/0 0/0 0/0 

C204 0.74/0 5.69/0  38.79/0.3 0/0 0/0 

C207 0/0 0/0 56.23/0.3 0/0 0/0 

R101 33.29/0.1 33.06/0.3 76.54/0.3 14.47/0 14.34/0 

R105 41.33/1 62.68/0.9 83.43/0.5 23.59/0.1 5.18/0 

R205 82.19/0 78.21/0 189.15/0.6 56.66/0 66.98/0 

R209 52.97/0 79.53/0 192.97/0.7 49.47/0 24.33/0 

RC101 -2.48/1.4 21.69/15.4 26.81/1.3 -39.06/1 -41.44/1 

RC107 67.39/0.7 96.1/1.1 122.5/0.8 78.58/0.3 36.39/0.3 

RC201 69.73/0 82.74/0 147.17/0.7 33.53/0 18.95/0 

RC208 50.89/0 70.6/0 167.23/0.3 44.25/0 23.48/0 

Averaged 

CPU time, s 

39.78 150.79 110.44 92.74 43.29 

 

The results are compared according to the defined objective: at first, the route 

number differences are compared, and afterwards differences of the total path length are 

compared. The best values are bold in Tables 1-4, and the second best values are 

displayed in italics. The results show that the LCSX crossover, proposed in this paper, 

has found better solutions than the other crossover operators in 45 cases out of 48. In the 

experiments where mutation was not applied, LCSX has found better solutions in all the 



 Genetic algorithms and VRP: the behaviour of a crossover operator 183 

 

cases. In 3 cases out of 48, the solutions found by LCSX are the second better comparing 

to the other crossover operators. For the RC101 problem instance, the path length 

difference identified is negative, however, the route number difference is positive. It 

means that a better path length is identified for the RC101 problem, but the number of 

routes was not minimized to the best known number. The best CPU time in the cases, 

where mutation was not applied, belongs to crossover LRX, however, the solutions 

found by this crossover are worst. The computation with the LRX crossover stopped 

early without finding better solutions, so it leads to a short CPU time and not so good 

solutions found. The LRX crossover showed better characteristics when mutation was 

applied, but the results are still worst comparing to other crossovers. 

The best computation time in the cases, where mutation is applied, belongs to BCRC. 

The computation time of LCSX is the second best one and is quite similar to the 

computation time of BCRC. However, the solutions found by LCSX are better than that 

found by BCRC. The genetic algorithm with CAX has found the second best solutions in 

most cases, where mutation was applied, and in some cases, where mutation was not 

applied. The CPU time of CAX is longer than LCSX because removal of the common 

arcs at the beginning produces more unhandled tasks and requires more insertion trials 

while searching for a solution that could be competitive in the population. Although the 

CPU time of BCRC is shorter than LCSX and CAX, BCRC cannot be applied to the 

problems, where the solution is one route. 

It is worth mentioning, that crossovers, defined by other authors (BCRC, RBX, 

LRX),  can be dependent on other parts in the genetic algorithm, i.e. on the created initial 

population or the selection operator, etc. LCSX has showed better results when 

computing without mutation or with mutation that randomly removes and reinserts tasks. 

6. Conclusions 

In the paper, new crossover operators are proposed, based on the common part search 

between parent solutions and the insertion heuristic is used for reconstruction. The 

crossover operators are proposed that intensify the search by identifying the common 

sequence of tasks in parent solutions. All unhandled tasks are reinserted back by using 

random insertion heuristic to preserve stochastic characteristics of genetic algorithm and 

to involve a diversification in the population. The new crossover operators are compared 

to other crossover operators that also deal with insertion heuristics for constructing 

feasible solutions. The crossover operators proposed are applied to VPRTW problem 

instances for comparison. The experimental evaluation shows that the new crossover 

operators, in most cases, find better solutions than other crossover operators. The 

computation time of the new crossover operator LCSX is similar to that of other 

crossovers, however, the solutions found are more accurate as compared to that found by 

the other crossovers. 

The solutions are found in the experimental evaluation by applying the mutation 

operator that randomly removes parts of the solutions and reconstructs the solution. 

However, such a mutation operator was chosen just for comparison of crossover 

operators. Different mutation operators could be used to find better solutions. Also, it is 

worth mentioning that some solutions are equal to the best known solutions even in the 

cases, where mutation was not applied, however, no additional improvement approaches 

are used. The new crossover operators proposed do not depend on the number of routes 

and they are designed for problems where not only the number of routes is the objective. 



184  G. Vaira and O. Kurasova 

 

The genetic algorithm together with the new crossover operators can be applied to 

different VRP problems or other problems, that can be expressed as a graph, and depend 

on the sequence of elements. 

The proposed crossovers could be investigated further in genetic algorithms with 

different ranking approaches, i.e. multi-objective genetic algorithms, where Pareto 

ranking is used. Different ranking would also affect the reconstruction method where the 

delta value is taken into account. 

References 

Alvarenga, G. B., de A. Silva, R. M., Sampaio, R. M. (2005). A Hybrid Algorithm for the Vehicle 

Routing Problem with Time Window, INFOCOMP Journal of Computer Science, 4(2), 9–

16. 

Berger, J., Barkaoui, M. (2004). A parallel hybrid genetic algorithm for the vehicle routing 

problem with time windows. Computers & Operations Research, 31, 2037–2053.. 

Chan, W.., Zhang, Y., Fung, S. , Ye, D., Zhu, H. (2007). Efficient algorithms for finding a longest 

common increasing subsequence. J. Comb. Optim., 13(3), 277–288. 

Dantzig, G. B., Ramser J. H. (1959). The truck dispatching problem. Management Science 6 

(1959), 80–91. 

Deep, K., Adane, H. M. (2011), New Variations of Order Crossover for Travelling Salesman 

Problem. IJCOPI 2(1) , 2–13. 

Garcia-Najera, A., Bullinaria, J. A. (2011). An improved multi-objective evolutionary algorithm 

for the vehicle routing problem with time windows. Computers & OR, 38, 287–300. 

Holland, J. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with 

applications to biology, Control and Artificial Intelligence. The University of Michigan 

Press. 

Hong, T., Wang, H., Lin, W., Lee, W. (2002). Evolution of Appropriate Crossover and Mutation 

Operators in a Genetic Process. Appl. Intell., 16(1), 7–17. 

Jih, W., Chen, Y., Hsu, Y. (1996). A Comparative Study of Genetic Algorithms for Vehicle 

Routing with Time Constraints. Proceedings of the 1996 International Computer 

Symposium, 17–24. 

Jih, W., Hsu, Y. (2004). A family competition genetic algorithm for the pickup and delivery 

problems with time window. Bull. Coll. Eng. N.T.U. 90, 89–98. 

Jung, S., Moon, B. R. (2002). A Hybrid Genetic Algorithm For The Vehicle Routing Problem 

With Time Windows. GECCO 2002, 1309–1316. 

Kumar, N., Karambir, Kumar, R. (2012). A Comparative Analysis of PMX, CX and OX Crossover 

operators for solving Travelling Salesman Problem. International Journal of Latest Research 

in Science and Technology, 1(2), 98–101. 

Lukasiewycz, M., Glaß, M., Teich, J. (2008). A Feasibility-Preserving Crossover and Mutation 

Operator for Constrained Combinatorial Problems. Volume 5199 of Lecture Notes in 

Computer Science, Springer, 919–928. 

Misevičius, A., Kilda, B. (2005). Comparison of crossover operators for the quadratic assignment 

problem. Information Technology and Control, 34(2), 109–119. 

Nagata, Y., Bräysy, O. (2009). Edge assembly-based memetic algorithm for the capacitated 

vehicle routing problem. Networks, 54(4), 205–215. 

Ombuki, B. M., Nakamura, M., Maeda, O. (2002). A hybrid search based on genetic algorithms 

and tabu search for vehicle routing. In 6th IASTED Intl. Conf. On Artificial Intelligence and 

Soft Computing (ASC 2002), edited by A.B. Banff, H Leung, ACTA Press, 176–181. 

Ombuki, B. M., Ross, B., Hanshar, F. (2006). Multi-Objective Genetic Algorithms for Vehicle 

Routing Problem with Time Windows. Applied Intelligence, 24(1), 17–30. 

Pisinger, D., Ropke, S. (2009). Large neighborhood search. Handbook of Metaheuristics, 2nd 

edition, M. Gendreau and J.-Y. Potvin(eds). 



 Genetic algorithms and VRP: the behaviour of a crossover operator 185 

 

Potvin, J.-Y., Bengio, S. (1996). The Vehicle Routing Problem with Time Windows Part II: 

Genetic Search. INFORMS Journal on Computing, 8(2), 165–172. 

Reid, D. J. (2000). Feasibility and Genetic Algorithms: the Behaviour of Crossover and Mutation. 

Land Operations Division of DSTO Electronics and Surveillance Research Laboratory. 

Schensted, C. (1961), Longest increasing and decreasing subsequences. Canad. J. Math. 13, 179–

191. 

Solomon, M.M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems with Time 

Window Constraints. Operations Research, 35(2), 254–265. 

Srinivas, M., Patnaik, L. M. (1994). Adaptive probabilities of crossover and mutation in genetic 

algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 24(4), 656–667. 

Tan, K. C., Chew, Y. H., Lee, L. H. (2006). A Hybrid Multiobjective Evolutionary Algorithm for 

Solving Vehicle Routing Problem with Time Windows. Comput. Optim. and Appl. 34 (1), 

115–151. 

Tan, K. C., Lee, L. H., Zhu, K. Q., Ou, K. (2001). Heuristic methods for vehicle routing problem 

with time windows. AI in Engineering, 15(3), 281–295. 

Thangiah, S., Nygard, K., Juell, P. (1991). GIDEON: A genetic algorithm system for vehicle 

routing with time windows. In Seventh Conference on Artificial Intelligence Applications, 

322–328. 

Vaira, G., Kurasova, O. (2010). Modified bidirectional shortest path Dijkstra‘s algorithm based on 

the parallel computation. Proceedings of the Ninth International Baltic Conference – Baltic 

DB&IS 2010 (J. Barzdins, M. Kirikova (eds.)), University of Latvia Press, 205–217. 

Vaira, G., Kurasova, O. (2011). Parallel Bidirectional Dijkstra’s Shortest Path Algorithm. DB&IS, 

Volume 224 of Frontiers in Artificial Intelligence and Applications, IOS Press, 422–435. 

Yang, I, Huang, C., Chao, K. (2005). A fast algorithm for computing a longest common increasing 

subsequence. Inf. Process. Lett., 93(5), 249–253. 

Yeun, L. C., Ismail, W. R., Omar, K. and Zirour, M. (2008). Vehicle Routing Problem: Models 

and Solutions. Journal of Quality Measurement and Analysis (JQMA), 4(1), 205–218. 

 

 

Received November 24, 2013, accepted December 10, 2013 

 


