
Baltic J. Modern Computing, Vol. 1 (2013), No. 1-2, 101-129

Quantum Query Algorithms

Alina VASILIEVA

Faculty of Computing, University of Latvia
Raina bulv. 29, LV-1459, Riga, Latvia

Alina.Vasiljeva@lu.lv

Abstract. Quantum computing is a method of computation based on the laws of quantum
mechanics. This subfield of computer science aims to employ quantum mechanical effects for the
efficient performance of computational tasks. In this article, we review the work by the author in a
field of quantum algorithms development. In the first part of the article, exact and bounded-error
quantum query algorithms for computing Boolean functions are presented. In the second part, a
query model is applied for computing multivalued functions. The third part is devoted to
nondeterministic query algorithms.

Keywords: quantum computing, query algorithms, algorithm complexity, algorithm design.

1. Introduction

Quantum computing is a subfield of computer science based on the laws of quantum
mechanics. It applies the quantum mechanical effects for more efficient solution of
computational problems than in a classical way. This area of science unites disciplines
such as physics, mathematics and computer science. In the scope of computer science
and mathematics the theoretical aspects, the potential and the limitations of quantum
computers are studied. At the same time, physicists are working on developing practical
implementations of quantum computing devices. This branch of science is very topical
because it is a proven fact that quantum computing can solve certain problems faster
than classical computing (Shor, 1997), (Grover,1996). Although quantum computers are
not yet available to everyone, many scientists all over the world are working to make
them universally available in the future. The physical implementation is very complex;
however, several quantum computer prototypes have been developed and are used to
solve computational problems (DiCarlo et al., 2009), (Politi et al., 2009), (Johnson et al.,
2011). Nevertheless, these are still only demonstration models of quantum processors
consisting of a small number of qubits. Theoretical results in the field of quantum
information processing are already successfully implemented in such areas as quantum
cryptography (Hiskett et al., 2006), (Dixon et al., 2008) and quantum teleportation (Jin et
al., 2010), (Lee et al.,2011). Several companies assert they are prepared for marketing
commercial quantum computing systems (IDQ, D-Wave). In spite of the progress
achieved, there is still a long way to go until quantum computers are capable of solving
real computational tasks. To be able to build complex and efficient quantum computer
systems in the future, it is necessary to develop and improve theoretical foundations of
quantum computing today.

102 Vasilieva

1.1. Research Object

Algorithm complexity theory is a sub-field of computer science investigating the
complexity of computational problems. One of the main tasks in complexity theory is
designing efficient algorithms. The main object of the research is the query model
(Buhrman and de Wolf, 2002). In this model, the definition of the function f(X) is

known, but input 1 2(, ,...,)NX x x x=

is hidden in a black box. Input values can be

accessed only by querying the black box about xi values. In the process of computation,
the query algorithm asks questions about variable values, receives answers from the
black box, performs the computation, and finally produces the function value output.
The goal is to develop a query algorithm that would compute the value of a certain
function correctly for an arbitrary input. The complexity of a query algorithm is
measured by the number of questions it asks based on worst-case input.

There are examples of efficient and impressive quantum algorithms already
developed. The most famous are Shor’s integer factoring algorithm (Shor, 1997),
Grover’s search algorithm (Grover, 1996) and algorithm for XOR function (Buhrman
and de Wolf, 2002). Other examples of lower and upper bound estimations of quantum
query algorithm complexity can be found in (Nielsen and Chuang, 2000), (de Wolf,
2001), (Ambainis and de Wolf, 2001), (Ambainis, 2004), (Ambainis, 2006), (Kravcevs,
2008), (Ščeguļnaja-Dubrovska, 2010).

1.2. Objectives of the Research

The overall goal of the research is to develop new, fast and efficient quantum algorithms
for solving specific computational problems, as well as to improve the general
construction techniques for algorithms. It is important to work out an approach for
designing efficient quantum algorithms for arbitrary functions. A collection of existing
methods (including, for instance, a method for evaluation of NAND formulas (Ambainis
et al., 2010)) is not sufficiently large and the computation of arbitrary function is a
complex task. The research is aimed at extending the collection of quantum algorithm
constructing methods by introducing new methods.

There exist different types of query algorithms: deterministic, probabilistic, and
nondeterministic, each exhibiting a specific behavior and defining different conditions
for an algorithm to produce the correct result. In the quantum query model the following
counterparts are studied: exact, bounded-error and nondeterministic quantum query
algorithms. In this respect the aim of the study is to analyze relations between different
complexity measures, to compare the classical and the quantum complexity of specific
computational problems and finally to find examples with large separation between the
optimal classical complexity and the quantum complexity of the same problem.

1.3. Summary of Results

The results consist of three parts:
• Quantum query algorithms for Boolean functions.
• Quantum query algorithms for multivalued functions.
• Nondeterministic query algorithms.

 Quantum Query Algorithms 103

Summary of the first part of results:
• Several exact quantum query algorithm construction methods are presented,

including a set of basic efficient algorithms for finite functions. The algorithm
transformation and concatenation methods are helpful for enlarging the set of
efficient exact algorithms. The methods can be used for generating examples of
N versus 2N gaps between quantum and classical query complexity of a
function.

• An exact quantum algorithm for verification of repetition codes is developed.
The algorithm complexity is N while classically 2N queries are required.

• A method for constructing a bounded-error quantum query algorithm for
conjunction 1 2f f f= ∧ using exact quantum query algorithms for sub-

functions f1 and f2 is developed. The correct probability of a correct answer is p
= 4/5 and the complexity is equal to the largest complexity of sub-algorithms:

1 2max((), ())E EQ f Q f .

In the second part of the article, quantum query algorithms for computing
multivalued functions are examined:

• Different types of algorithms for computing multivalued functions are
introduced.

• Examples are demonstrated where the quantum query algorithm complexity is
lower than in the classical case.

In our opinion, this section contains the most important results. The main result is the
example developed where the quantum query complexity of the function is N, while
classically 3N queries are required to compute the same function. Function is not based
on XOR operation and there is no error probability for an algorithm.

In the third part, nondeterministic query algorithms are examined. First, the results of
designing algorithms according to the traditional nondeterministic query model are
presented. A new type of algorithm is introduced: the dual nondeterministic quantum
query algorithm. The properties of such algorithms are investigated. Examples of
efficient dual nondeterministic quantum query algorithms are demonstrated. Second, a
new alternative model for nondeterministic computation is proposed. The elaborated
model is demonstrated through the example of computing a specific Boolean function,
for which the gap between deterministic and nondeterministic query complexity is
demonstrated to be 7N versus O(3N).

Most part of results has been already published and we provide references to
publications at the beginning of each section. More details and full proofs are available
in referenced papers and (Vasilieva, 2012).

2. Theoretical Background

2.1. Classical Decision Trees

The classical version of the query model is known as decision trees. The definition of the
Boolean function f(X) is known, but the black box contains the input

1 2(, , ...,)NX x x x= and can be accessed by querying xi values. The algorithm must

allow determination of the correct value of a function for an arbitrary input. The
complexity of the algorithm is measured by the number of queries on the worst-case

104 Vasilieva

input. For more details, see the survey on decision tree complexity (Buhrman and de
Wolf, 2002).

A deterministic decision tree is a tree with internal nodes labeled with variables xi,
arrows labeled with possible variable values and leafs labeled with function values. The
deterministic decision tree always follows the same computational path for each input
and produces correct result with probability p = 1. The deterministic complexity of a
function f is denoted by D(f).

A probabilistic decision tree may contain internal nodes with a probabilistic
branching, i.e., multiple arrows exiting from the above node, each one labeled with a
probability for algorithm to follow. The total probability to obtain a result r after
application of an algorithm on certain input X equals the sum of probabilities for each
leaf labeled with r to be reached.

A nondeterministic decision tree differs from the deterministic one by an additional
possibility that there can be more than one arrow labeled with the same value exiting
each tree vertex. The nondeterministic decision tree computes Boolean function f(X), if
for an arbitrary input X it is true that:

• if f(X)=1, then a path exists from the root to the leaf with result 1;
• if f(X)=0, then a path exists from the root to the leaf with result 0;
• there is no path from the tree root to the leaf with incorrect function value.

2.2. Quantum Computing

The basics of quantum computing are available in the following books and papers:
(Feynman, 1982), (Deutsch, 1985), (Cleve et al., 1998), (Gruska, 1999), (Childs et al.,
2003), (Kaye et al., 2007).

An n-dimensional quantum pure state is a unit vector in an n-dimensional Hilbert

space. Let 0 , 1 ,..., 1n − be an orthonormal basis for n
� . Then, any state can be

expressed as
1

0

n

ii
iψ α

−

=
=∑ for some n

i ∈�α . The norm of ψ is 1:

21

0
1

n

ii
α

−

=
=∑ . States 0 ,..., 1n − are called basis states. Any state of the form

1

0

n

ii
iα

−

=∑ is called a superposition of 0 ,..., 1n − . The coefficient iα is called an

amplitude of i .

The state of a quantum system can be changed by applying the unitary

transformation. The unitary transformation U is a linear transformation on n
� that maps

vector of unit norm to another or the same vector of unit norm. Formally, unitary
transformation is represented by a unitary matrix.

There are various types of the quantum measurement; the quantum query model uses
the simplest one – the full measurement in the computation basis. Performing this
measurement on a state 0 10 ... 1n nψ α α −= + + − produces the outcome i with

probability
2

iα . The measurement changes the state of the system to i and destroys

the original state ψ .

 Quantum Query Algorithms 105

2.3. Quantum Query Model

The quantum query model is also known as the quantum black box model. This model is
the quantum counterpart of decision trees and is intended for computing Boolean
functions. For a detailed description, see (Buhrman and de Wolf, 2002), (Ambainis,
2004), (Cleve et al., 1998), (Kaye et al., 2007), (de Wolf, 2001).

A quantum computation with T queries is a sequence of unitary transformations:

0 0 1 1 1 1 , , , , ... , , ,T T TU Q U Q U Q U− − .

Ui's can be arbitrary unitary transformations not depending on input bits. Qi's are

unitary query transformations. Computation starts in the initial state 0
�

. Then

transformations U0, Q0,…, QT-1, UT are applied and the final state measured.
In algorithms created by the present research, the following definition of a query

transformation is used - if the input is a state ii
iψ α=∑ , then the output is:

()
1

0

1 i

n

i i

i

i
ϕγ α

−

=

= −∑ , where 1{ ,..., ,0,1}i Nx xϕ ∈ .

In other words, for each query for each basis state i

a variable assignment i

ϕ

may

be arbitrarily chosen. It is also allowed to skip the variable assignment for any particular
basis state, i.e. to set 0

i
ϕ = for i ; or inverse amplitude value sign by setting 1

i
ϕ =

for

a particular i . Depending on the value of the assigned variable, the sign of the

amplitude of the quantum basis state either changes to the opposite or remains
unchanged.

Formally, any transformation has to be defined by a unitary matrix:

()

()

()

0

1

1

1 0 ... 0

0 1 ... 0

...

0 0 ... 1 n

Q

ϕ

ϕ

ϕ −

 −

− =

 −

After all query transformations Qi are applied (alternating with fixed intermediate
unitary transformations Ui), the last remaining action is to extract the result value from
the final quantum state. It is achieved by measuring this state and interpreting the
quantum basis state observed after that. A value of a function is assigned to each basis
state. The probability of obtaining the result r after applying an algorithm on input X
equals the sum of squared moduli of all amplitudes, which correspond to outputs with
value r.

Quantum query algorithms can be conveniently represented in diagrams, and this
approach is used throughout the paper. Fig. 1 demonstrates a graphical representation of
an algorithm in a general form.

106 Vasilieva

Fig. 1. Graphical representation of a quantum query algorithm

A quantum query algorithm computes f exactly if the output equals f(X) with

probability 1p = , for all {0,1}NX ∈ . Complexity is equal to the number of queries and

is denoted by QE(f) (Buhrman and de Wolf, 2002).
A quantum query algorithm computes f with bounded-error if the output equals f(X)

with probability 2 / 3p > , for all {0,1}NX ∈ . Complexity is equal to the number of

queries and is denoted by Qp(f) (Buhrman and de Wolf, 2002).

3. Quantum Query Algorithms for Boolean Functions

In this section, the results of designing different types of quantum query algorithms are
presented, simplifying the task of algorithm construction for an arbitrary function.

3.1. Exact Quantum Query Algorithms

This section is based on the papers (Dubrovska and Mischenko-Slatenkova, 2006),
(Dubrovska, 2007), (Vasilieva, 2009).

Exact algorithms always produce a correct answer with probability p = 1. The error
probability in algorithms of this kind is not allowed, the said limitation significantly
complicating the design of the above algorithms. There are a significant number of
efficient quantum algorithms with an error probability already developed. Applying
those, the quantum algorithm speedup comparing to the best known classical algorithm
is known to be quadratic (Grover, 1996) or even exponential (Shor, 1997). However, in
certain types of computer software, we cannot allow even a small probability of error,
for example, in spacecraft, aircraft, or medical software. For this reason, the
development of exact algorithms is very important. By contrast with non-exact
algorithms, the largest known complexity separation between the quantum exact and
classical deterministic algorithm until recently was only N versus 2N for XOR function

(Deutsch, 1985), (Cleve, 1998). Another category of exact quantum algorithms are
algorithms for promise problems. In such problems, the domain of the function is
restricted, i.e. input is promised to belong to a subset of all possible inputs. Examples of

 Quantum Query Algorithms 107

exact quantum query algorithms for promise problems can be found in (Deutsch and
Jozsa, 1992), (Simon, 1994), (Freivalds and Iwama, 2009).

A long standing open question was whether it is possible to achieve a larger gap
between quantum exact and classical deterministic query complexity of a total function
with no error allowed. The conjecture about relation between complexity measures was
the following:

()
()

2E

D f
Q f ≥ .

Many authors have worked to either prove or refute this conjecture. This problem has
been considered, for instance, in (Agadžanjans, 2010), (Lace, 2004), (Lace, 2008).
Examples of a borderline gap of N versus 2N have been presented, but for a long time
nobody has been able to improve this result. Just recently a first example was described
in a paper (Ambainis, 2012) presenting an algorithm with the superlinear gap between
classical deterministic and quantum exact algorithm complexity: N versus O(N0.8675...).

Our contribution consists of:
• new examples of N versus 2N complexity separation;
• techniques for enlarging a set of efficiently computable Boolean functions;
• methods for generating algorithms producing an infinite set of instances of

N versus 2N complexity separations.
To simplify calculations in the process of algorithm development and debugging, i.e.

to automate the verification process, we developed a simple program using Wolfram
Mathematica software.

3.1.1. Basic Exact Quantum Query Algorithms

We start with exact quantum query algorithms for two problems of a finite input size.
Both algorithms are of lower complexity than the best possible classical algorithms.
Further these algorithms are used as a base for building advanced algorithms.

Function 1: 3 1 2 2 3() () ()EQUALITY X x x x x= ¬ ⊕ ∧¬ ⊕ .

Classical deterministic complexity: D(EQUALITY3) = 3.
An exact quantum query algorithm with two questions is developed (Fig. 2).

Fig. 2. Exact quantum query algorithm with two queries for EQUALITY3

Function 2: () ()4 1 2 3 4 1 2 3 4_ (, , ,)PAIR EQUALITY x x x x x x x x= ¬ ⊕ ∧¬ ⊕ .

Classical deterministic complexity: D(PAIR_EQUALITY4) = 4.
An exact quantum query algorithm with two questions is developed (Fig. 3).

108 Vasilieva

Fig. 3. Exact quantum query algorithm with two queries for PAIR_EQUALITY4

3.1.2. Algorithm Transformation Methods

Quantum query algorithm transformation methods are introduced useful for enlarging a
set of exactly computable Boolean functions. Each method receives an exact quantum
query algorithm on input, processes it according to the rules producing as the result a
slightly different exact algorithm computing another function.

Methods are the following:
• Output value assignment inversion.
• Output value assignment permutation.
• Permutation of query variables.

Applying transformation methods to two basic algorithms produced two sets of
Boolean functions.

Set QFunc3 – eight three-argument Boolean functions, where for each function there
is an exact quantum query algorithm, which computes it with two queries.

Set QFunc4 – twenty four four-argument Boolean functions, where for each function
there is an exact quantum query algorithm, which computes it with two queries.

Table 1. Results of applying transformation methods to EQUALITY3 algorithm

X
EQUALITY

Output value assignment
permutation

Output value assignment inversion

(1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1) (0,1,1,1) (1,0,1,1) (1,1,0,1) (1,1,1,0)

000 1 0 0 0 0 1 1 1
001 0 0 0 1 1 1 1 0
010 0 0 1 0 1 1 0 1
011 0 1 0 0 1 0 1 1
100 0 1 0 0 1 0 1 1
101 0 0 1 0 1 1 0 1
110 0 0 0 1 1 1 1 0
111 1 0 0 0 0 1 1 1
D(f) 3 3 3 3 3 3 3 2
QE(f) 2 2 2 2 2 2 2 2

Transformation methods can be applied to every new exact quantum query

algorithm, thus constructing a larger set of efficiently computable Boolean functions.
Moreover, exact algorithms obtained this way further can be used as building blocks for
more complex algorithms.

 Quantum Query Algorithms 109

3.1.3. Exact Quantum Query Algorithm for Verifying Repetition Code

A repetition code is a data transmission error detection scheme. (r, N) code repeats each
N-bit block r times (Cover and Thomas, 1991). Verification procedure for the repetition
code involves checking whether in each group of r the consecutive blocks of size N all
blocks are equal.

(2,1) repetition code verification procedure is represented as the process of
computing the following Boolean function (N = 2k):

() () () ()1 2 3 4 5 6 2 -1 21, ...
()

0 ,
k k

N

if x x x x x x x x
VERIFY X

otherwise

 = ∧ = ∧ = ∧ ∧ =
=

We propose an exact quantum query algorithm computing VERIFYN function using
N/2 queries, while classically N queries are required (Fig. 4).

Fig. 4. Exact quantum algorithm for computing the Boolean function VERIFYN

(r,1) repetition code verification procedure is represented as the process of
computing the following Boolean function:

() ()1 (1) 11, ,..., ... ,...,
()

0 ,

r r r N r Nrr
r N

if EQUALITY x x EQUALITY x x
VERIFY X

otherwise

− +
⋅

 ∧ ∧
=

Theorem 1. ()r
r ND VERIFY rN⋅ = .

Proof idea. By function sensitivity on any accepting input.

Theorem 2. () (1)r
E r NQ VERIFY r N⋅ = − .

Proof idea. We use the similar construction as in Fig. 4, but insert algorithms for
EQUALITYr as sub-routines instead of algorithms for XOR2.

110 Vasilieva

3.1.4. Algorithm Concatenation Methods

Finally, we generalize described approaches for quantum query algorithm design and
present methods for generating complex quantum algorithms from simple building
blocks. Specifically, these methods can be used for generating examples of N versus 2N
gaps between quantum and classical query complexity of the function.

Given an exact quantum query algorithms 1 2, QA QA computing Boolean functions

f1(X), f2(Y) with complexity 1 1()
E

Q QA m= , 2 2()
E

Q QA m=

it is possible to build a new

exact quantum query algorithms with complexity 3 1 2()
E

Q QA m m= + for computing the

following Boolean functions:
• conjunction of basic functions: 1 2() () ()f XY f X f Y∧ = ∧ ;

• disjunction of basic functions: 1 2() () ()f XY f X f Y∨ = ∨ ;

• XOR of basic functions: 1 2() () ()f XY f X f Y⊕ = ⊕ .

Fig. 5 demonstrates constructions for computing a conjunction and a disjunction of
basic functions. In case of XOR operation, instances of the algorithm QA2 have to be
concatenated to algorithm’s QA1 outputs in a similar way. However, this time the second
algorithm has to be concatenated to all outputs – both, the accepting and the rejecting.
Additionally, for QA2 instances concatenated to accepting outputs of QA1, the result
values assigned to the states have to be inversed.

Fig. 5. Algorithm concatenation methods for computing conjunction and disjunction

3.2. Bounded-Error Quantum Query Algorithms

This section is based on the paper (Vasilieva and Mischenko-Slatenkova, 2010).

 Quantum Query Algorithms 111

Every Boolean function can be presented as a logical formula in a conjunctive
normal form (CNF). Formula is in CNF if it is a conjunction (ANDs) of disjunctions
(ORs) of variables or negated variables. Therefore, a fast and efficient algorithm for
conjunction is necessary. Algorithms for computing this kind of function have been
previously presented in (Dubrovska, 2007), (Kerenidis and de Wolf, 2004), (Lace,
2008).

We present a bounded-error quantum query algorithm for computing the conjunction

1 2() () ()f XY f X f Y= ∧ , which improves previous results.

Fig. 6 presents a quantum algorithm, which computes the conjunction of two bits

1 2 1 2(,)f x x x x= ∧ using one query with correct answer probability p = 4/5.

Fig. 6. Quantum algorithm computing the conjunction of two bits

Classical complexity lower bound is the following: the Boolean function

2 1 2(,)AND x x can be computed by a randomized classical decision tree with one query

with the maximum probability p = 2/3.
During the analysis of an algorithm a way to generalize it for computing the

conjunction of sub-functions was discovered. The following algorithm construction
method is formulated.

Given exact quantum query algorithms QA1, QA2 for computing Boolean functions
f1(X1), f2(X2) with complexity 1 1()

E
Q QA m= , 2 2()

E
Q QA m= it is possible to build a

quantum query algorithm computing a function 1 2() () ()f XY f X f Y= ∧ with

probability p = 4/5 and complexity 1 2() max(,)
E

Q QA m m= .

It should be noted that the method is applicable to basic exact algorithms satisfying
specific properties.

The most significant advantage of this method is that the overall algorithm
complexity does not exceed the greatest complexity of sub-algorithms. To compute a
composite function, additional queries are not required. However, the cost for efficient
computing is the error probability.

Proposed quantum query algorithm for computing conjunction is more efficient than
the best possible classical deterministic analogue and ensures better correct answer
probability than the best possible classical probabilistic algorithm.

Further action line for algorithm improvement is the following:
• to extend the number of clauses of computable conjunction to N;

112 Vasilieva

• to increase the correct answer probability.

4. Quantum Query Algorithms for Multivalued Functions

This chapter is based on the papers (Vasilieva, 2010), (Vasilieva, 2011).
The query model is mostly used to compute Boolean functions. However it is

possible to apply the query model to functions with larger domain and wider range as
well. In this section, we consider even a more uncommon case: computing of
multivalued functions (multifunctions). The study of the query complexity of
multifunctions has been inspired by the book on communication complexity (Kushilevitz
and Nisan, 1997).

Multifunction is a left-total binary relation associating values from the domain set
with one or more values from a range set. Function is simply a special case of
multifunction, where each value from a domain set is mapped to no more than one value
from a range set.

We consider the following kind of multifunctions:

() :{0,1}N
M X →� , where 1 2(, ,...,)NX x x x= , {0,1}ix ∈ .

The major motivation for studying query complexity of multivalued function is a
potential possibility to achieve a larger gap between quantum and classical query
complexity than N versus 2N.

We analyze the possibility of computing multivalued functions in the query model
and propose different types of query algorithms for this task. Three examples are
demonstrated where the quantum query algorithm complexity is lower than the classical
query algorithm complexity.

4.1. Computing Multifunctions in a Query Model

Computation of usual functions in a query model has been studied in detail: for each
input, the algorithm has to output correct function value with a certain probability.
However, it is not obvious how to extend a query model to compute multivalued
functions. We propose three different ways of description on how the query algorithm
computes a multifunction and define three types of query algorithms based on these
options.

Definition 1. The query algorithm computes multifunction M(X) in a definite manner, if

for each X it outputs one certain correct value from the result set with probability p = 1.

The classical query complexity is denoted by CD(M). The quantum query complexity is

denoted by QD(M).

The type of the classical decision tree computing a multifunction in a definite manner
is the deterministic decision tree. In the quantum version, the corresponding algorithm
type is the exact quantum query algorithm.

Definition 2. The query algorithm computes multifunction M(X) in a randomly

distributed manner, if for each X it outputs arbitrary values from a result set with

arbitrary probabilities (for each value such probability has to be positive) never

delivering an incorrect value. The classical query complexity is denoted by CRD(M). The

quantum query complexity is denoted by QRD(M).

 Quantum Query Algorithms 113

The above definition is more natural and takes account of the essence of
multifunction as a mathematical object. In a classical query model, probabilistic decision
trees should be used to produce the described behavior. Quantum query algorithms seem
to be better suited for computing multifunctions in a distributed manner because of the
superposition principle.

Definition 3. The query algorithm computes multifunction M(X) in a uniformly

distributed manner, if for each X it outputs each value from a result set with equal

probability never delivering an incorrect value. The classical query complexity is

denoted by CUD(M). The quantum query complexity is denoted by QUD(M).

This definition poses a serious constraint to designing of a query algorithm.
However, in our opinion this definition is the most reasonable in the sense of computing
a multifunction and algorithms of that type have the most practical applications.

4.2. Example 1 of Computing a Multifunction

First, a three-variable multifunction 3
1 :{0,1} {1,2,3,4}M → is examined, that is defined

in Table 2.
The classical uniformly distributed query algorithm complexity lower bound is the

following: CUD(M1) = 2.
The quantum query algorithm is demonstrated in Fig. 7 that computes the

multifunction using one query: QUD(M1) = 1.

Table 2. Definition of the multifunction M1

X M1(X) X M1(X)
000 { 1 , 3 } 100 { 2 , 4 }
001 { 1 , 4 } 101 { 2 , 3 }
010 { 2 , 3 } 110 { 1 , 4 }
011 { 2 , 4 } 111 { 1 , 3 }

Fig. 7. Uniformly distributed quantum algorithm for multifunction M1

114 Vasilieva

Subsequently, multifunction is generalized to the case of N variables:

1
1 : {0,1} {1, 2,..., 2(1)}GEN N

M N→ − , where

1
1 1

1
1

 1 : if (0), then () 2(1) 1

 otherwise () 2(1)

GEN
i

GEN

i N x x M X i

M X i

∀ < ≤ ⊕ = = − −

= −

Classically two queries are required to compute the multifunction in a uniformly

distributed manner: CUD(1
1
GEN

M) = 2.

The quantum query algorithm is demonstrated in Fig. 8 that computes the

multifunction using one query: QUD(1
1
GEN

M) = 1.

The second generalization of multifunction is the following:
22

1 :{0,1} {1,2,..., 2(1)}GEN N
M N→ − , where

1 2 (1) 1 (1) 2 (1)

2
1

2
1

 1 : if ((...) (...) 0),

 then () 2(1) 1

 otherwise () 2(1)

N i N i N i N N

GEN

GEN

i N x x x x x x

M X i

M X i

− + − + − +∀ < ≤ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ =

= − −

= −

The classical algorithm complexity lower bound is: CUD(2
1
GEN

M) = 2N.

The quantum query algorithm is demonstrated in Fig. 9 that computes the

multifunction using N queries: 2
1()GEN

UDQ M N≤ .

Fig. 8. Uniformly distributed quantum algorithm for multifunction 1
1
GEN

M

 Quantum Query Algorithms 115

Fig. 9. Uniformly distributed quantum algorithm for multifunction 2
1
GEN

M

4.3. Example 2 of Computing a Multifunction

First, a four-variable multifunction 4
2 : {0,1} {1, 2,3, 4}M →

is examined, that is defined

in Table 3.

Table 3. Definition of the multifunction M2

X M2(X) X M2(X)
0000 {1} 1000 {1,2,3,4}
0001 {1,2,3,4} 1001 {4}
0010 {1,2,3,4} 1010 {2}
0011 {3} 1011 {1,2,3,4}
0100 {1,2,3,4} 1100 {3}
0101 {2} 1101 {1,2,3,4}
0110 {4} 1110 {1,2,3,4}
0111 {1,2,3,4} 1111 {1}

The classical uniformly distributed query algorithm complexity lower bound is:

2() 3UDC M ≥ .

The quantum query algorithm is demonstrated in Fig. 10 that computes the
multifunction using one query: 2() 1UDQ M = .

116 Vasilieva

Fig. 10. Uniformly distributed quantum algorithm for multifunction M2

Subsequently, multifunction is generalized to the case of N variables:
1 4

2 :{0,1} {1,2,3,4}GEN N
M → .

Imagine that 4N variables are arranged on four vertical lines (v-lines) in such a way
that:

4{0,... 1}, {1,2,3,4}: i ki N k x +∀ ∈ − ∀ ∈

belongs to v-line number k.

For example, 1 5 9 13, , , ,...x x x x are placed on the 1st
v-line, 2 6 10 14, , , ,...x x x x - on the

2nd, and so on (see Fig. 11 for illustration).
The result set for each input X of the multifunction is defined as follows:

1. 1
2 () {1}GEN

M X = , if all four v-lines of X contain either odd or even number of

“1”.

2. 1
2 () {2}GEN

M X = , if 1st and 3rd
v-lines of X have odd number of “1” and 2nd and

4th have even number of “1”, or vice versa: 1st an 3rd – even and 2nd and 4th -
odd.

3. 1
2 () {3}GEN

M X = , if 1st and 2nd
v-lines of X have odd number of “1” and 3rd and

4th have even number of “1”, or vice versa: 1st and 2nd – even and 3rd and 4th -
odd.

4. 1
2 () {4}GEN

M X = , if 1st and 4th
v-lines of X have odd number of “1” and 2nd and

3rd have even number of “1”, or vice versa: 1st and 4th - even and 2nd and 3rd -
odd.

5. In all other cases, 1
2 () {1, 2,3, 4}GEN

M X = .

The classical algorithm complexity lower bound is: 1
2() 3GEN

UDC M N≥ .

The quantum query algorithm is demonstrated in Fig. 11 that computes multifunction

in a uniformly distributed manner using N queries: 1
2()GEN

UDQ M N≤ .

Fig. 11. Uniformly distributed quantum algorithm for multifunction 1
2
GEN

M

 Quantum Query Algorithms 117

Finally, another one generalization on multifunction is created and as a result a

different multifunction 2
2 :{0,1} {1,2,..., }GEN NM N→

is obtained.

This time randomly distributed query algorithm complexity is examined.

The classical algorithm complexity lower bound is: 2
2() 1.

2
GEN

RD

N
C M ≥ +

The quantum query algorithm is demonstrated in Fig. 12 that computes multifunction

in randomly distributed manner using one query: 2
2() 1GEN

RDQ M = .

Fig. 12. Randomly distributed quantum algorithm for multifunction
2

2
GEN

M

4.4. Example 3 of Computing a Multifunction

The last example in our opinion is the most interesting. First, a multifunction
8

3 :{0,1} {1,2,3,4}M →

is examined. Table 4 describes the rules, where exactly one rule

is true for each input X. In the last column of the corresponding table row, the
multifunction result set for examined input X is specified.

Classically six queries are required to compute the multifunction in a uniformly
distributed manner: 3() 6UDC M = .

The quantum query algorithm is developed (Fig. 13) that computes multifunction

using two queries: 3() 2UDQ M ≤ .

Fig. 13. Uniformly distributed quantum algorithm for multifunction M3

118 Vasilieva

Table 4. Definition of the multifunction M3

Rules for input 1 8(,...,)X x x= Result set M3(X)

1 2 3 4 5 7() &()x x x x x x= = = = {1,2}

1 2 3 4 5 7() &()x x x x x x= = = ≠ {3,4}

1 2 3 4 1 3 5 7(& &) &()x x x x x x x x= = ≠ = {3,4}

1 2 3 4 1 3 5 7(& &) &()x x x x x x x x= = ≠ ≠ {1,2}

1 2 3 4 1 3 6 7(& &) &()x x x x x x x x≠ = = = {1,4}

1 2 3 4 1 3 6 7(& &) &()x x x x x x x x≠ = = ≠ {2,3}

1 2 3 4 1 3 6 7(& &) &()x x x x x x x x≠ = ≠ = {2,3}

1 2 3 4 1 3 6 7(& &) &()x x x x x x x x≠ = ≠ ≠ {1,4}

1 2 3 4 1 3 5 8(& &) &()x x x x x x x x= ≠ = = {1,4}

1 2 3 4 1 3 5 8(& &) &()x x x x x x x x= ≠ = ≠ {2,3}

1 2 3 4 1 3 5 8(& &) &()x x x x x x x x= ≠ ≠ = {2,3}

1 2 3 4 1 3 5 8(& &) &()x x x x x x x x= ≠ ≠ ≠ {1,4}

1 2 3 4 1 3 6 8(& &) &()x x x x x x x x≠ ≠ = = {1,2}

1 2 3 4 1 3 6 8(& &) &()x x x x x x x x≠ ≠ = ≠ {3,4}

1 2 3 4 1 3 6 8(& &) &()x x x x x x x x≠ ≠ ≠ = {3.4}

1 2 3 4 1 3 6 8(& &) &()x x x x x x x x≠ ≠ ≠ ≠ {1,2}

Subsequently, two generalizations of quantum algorithm are developed.
The first generalization is based on quantum parallelism and computes 8N-variable

multifunction. Quantum algorithm uses two queries to compute the multifunction (Fig.
14). Classically, six queries are required.

Fig. 14. Uniformly distributed quantum algorithm for multifunction 1
3
GEN

M

 Quantum Query Algorithms 119

The idea of the second generalization is to substitute every xi by 1 2 ... :iN
i i ix x x⊕ ⊕ ⊕

8 81 2 12 1 1 1 1 1
1 2 8 3 1 83 1 2 8 1 8(,..., , ,..., ,......, ,...,) (... ,......, ...).N NN N NGEN

M x x x x x x M x x x x= ⊕ ⊕ ⊕ ⊕

The classical algorithm complexity lower bound is: 2
3() 6GEN

UDC M N= .

The quantum query algorithm is developed (Fig. 15) that computes multifunction

using 2N queries: 2
3() 2GEN

UDQ M N≤ .

Fig. 15. Uniformly distributed quantum algorithm for multifunction 2
3
GEN

M

5. Nondeterministic Query Algorithms

A nondeterministic finite automaton, as introduced in (Rabin and Scott, 1959), is a
machine with many choices in its movements. On every stage it may choose one of
several further internal states. The nondeterministic machine accepts a tape if there is at
least one winning combination of choices of states leading to a designated final state.
This is a traditional point of view on nondeterminism. In the first part of the section,
traditional nondeterministic quantum query model is examined.

In (Floyd, 1967), nondeterministic algorithms are considered conceptual devices for
simplifying the design of backtracking algorithms. The above study supports a view that
algorithms are nondeterministic not in the sense of being random, but in the sense of
having a free will. In the second part of the section, the above mentioned free will is
investigated and alternative definition of nondeterministic query algorithm is proposed.

In (Hopcroft and Ullman, 1969), the detailed definitions of nondeterministic finite
automata, pushdown automata, Turing machine, and related results in complexity theory
are provided.

5.1. Traditional Nondeterministic Quantum Query Model

This section is based on the paper (Dubrovska, 2007).
Nondeterministic quantum query algorithms (NQQA) were examined in (de Wolf,

2003). For instance, it was proved that it is possible to compute a function
() 1 1f X X= ⇔ ≠

using one query for all N, though it is proved that the best classical nondeterministic
algorithm requires all N questions.

Definition 4. (de Wolf, 2003) A nondeterministic quantum query algorithm for f is

defined to be a quantum algorithm that outputs 1 with positive probability if () 1f X =

and that always outputs 0 if () 0f X = .

NQ1(f) denotes the query complexity of a nondeterministic quantum algorithm for f.

120 Vasilieva

5.1.1. Dual Nondeterministic Quantum Query Algorithms

We introduce the concept of a dual nondeterministic quantum query algorithm and study
the relations between complexity of exact, nondeterministic and dual nondeterministic
quantum query algorithms.

Definition 5. A dual nondeterministic quantum query algorithm for f is defined to be a

quantum algorithm that outputs 0 with positive probability if () 0f X =

and that always

outputs 1 if () 1f X = .

NQ0(f) denotes the query complexity of a dual nondeterministic quantum algorithm
for f.

5.1.2. Properties of NQQA

We present several theorems related to nondeterministic query complexity. The most
important results are related to computing the following composite functions:

Theorem 3. Let Q1 be an exact quantum query algorithm that computes a Boolean

function f with k queries. Consequently, a dual nondeterministic quantum query

algorithm Q2 exists, computing a function MULTI_ANDm(f) with the same k queries for

all m.

Theorem 4. For an arbitrary Boolean function f,

0(_ ()) ()m ENQ MULTI AND f Q f≤ .

Theorem 5. Let Q1 be an exact quantum query algorithm that computes Boolean

function f with k queries. Consequently, a nondeterministic quantum query algorithm Q2

exists computing the function MULTI_ORm(f) with the same k queries for all m.

Theorem 6. For an arbitrary Boolean function f,

1(_ ()) ()m ENQ MULTI OR f Q f≤ .

Theorem 7. Let fi be an arbitrary Boolean function. Let us examine a function

1 2 ... nF f f f= ∧ ∧ ∧ . A dual nondeterministic quantum query algorithm Q exists

computing F with 1 2E E E nmax(Q (f),Q (f),...,Q (f)) queries.

Theorem 8. Let fi be an arbitrary Boolean function. Let us examine a function

1 2 ... nF f f f= ∨ ∨ ∨ . A nondeterministic quantum query algorithm Q exists computing F

with 1 2E E E nmax(Q (f),Q (f),...,Q (f)) queries.

 Quantum Query Algorithms 121

5.1.3. Application of NQQA Properties

In this section, we present several examples of dual nondeterministic quantum query
algorithms that are better than the best possible classical counterparts.

In the first example, the following Boolean function is considered:

7 1 2 3 4 5 6 7 1 2 1 3 4 5 6 7(, , , , , ,) (() ()) (() ())H x x x x x x x x x x x x x x x= ¬ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ .

Classical deterministic complexity is 7() 7D H = .

A dual nondeterministic quantum algorithm is demonstrated in Fig. 16 computing H7
using two queries.

Fig. 16. Dual nondeterministic quantum query algorithm for H7

In the second example, the following Boolean function is considered:

1 1 2

2 1 2 3

1 2 1 2 1

2 2 1 2 1

2 1 1 2 1

...............................(, ,..., , ,...,) 1

...

...

k

k

N k k k

k k

k k k

x x x

x x x x

Control x x x x x

x x x x

x x x x x

+

+

+ −

− −

− −

= ⊕
 = ⊕ ⊕

= ⇔
 = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕

Classical deterministic complexity is ()ND Control N= .

A dual nondeterministic quantum algorithm is demonstrated in Fig. 17 computing
ControlN using two queries.

Fig. 17. Dual nondeterministic quantum query algorithm for ControlN

122 Vasilieva

In the third example, the following Boolean function is considered:

1 2 3 4 2 1 2_ () () () ... ()N k kPAIR EQUALITY X x x x x x x−=¬ ⊕ ∧¬ ⊕ ∧ ∧¬ ⊕ ,

where N = 2k.
Classical deterministic complexity is (_)ND PAIR EQUALITY N= .

A dual nondeterministic quantum algorithm is demonstrated in Fig. 18 computing
PAIR_EQUALITYN using one query.

Fig. 18. Dual nondeterministic quantum query algorithm for PAIR_EQUALITYN

5.1.4. Open Problems

The future direction of this research study is to prove stronger relations to other types of
query algorithms, for example, to exact quantum algorithms of the same function,
classical nondeterministic query algorithms and classical deterministic algorithms. It
would also be useful to discover efficient quantum nondeterministic algorithms for
specific functions, revealing large gaps between complexities of different kinds of
algorithms.

5.2. Alternative Nondeterministic Query Model

This section is based on the paper (Vasilieva and Freivalds, 2011).
In (Floyd, 1967), a point of view is presented that algorithms are nondeterministic

not in the sense of being random, but in the sense of having a free will.
We investigate the nature of the above-mentioned nondeterministic free will. We

propose a way to measure the amount of nondeterminism in an algorithm. In the
traditional nondeterministic query model the power of nondeterminism comes at no cost.
The idea is that for the benefit of nondeterminism, the algorithm must “pay” with
additional queries. We introduce an alternative definition of the nondeterministic query
model, which incorporates the behavior described above. The definition of
nondeterministic quantum query algorithms examined in the previous section seems a
little counter intuitive. This is an additional motivation to introduce a new approach for
nondeterminism in query algorithms.

 Quantum Query Algorithms 123

5.2.1. Definition of the Alternative Nondeterministic Query Model

The idea of the model can be informally described as follows. Supposedly the task is to
compute some arbitrary Boolean function F(X) in an alternative nondeterministic query
model. In such case, the first step is to define a nondeterministic helper function G(X,Y).
This function has to satisfy definite conditions. The second step is to design a
deterministic query algorithm for the function G(X,Y). Finally, the nondeterministic
query complexity of the function F(X) is equal to the complexity of the deterministic
query algorithm for a nondeterministic helper function G(X,Y).

Subsequently, we provide formal definitions for the computational model informally
described above.

Definition 6. The nondeterministic helper function G(X,Y) for the Boolean function

F(X) is a partial Boolean function, which satisfies the following conditions:

∀x1, ..., xn, ∃y1, ..., yk, so that G(x1, ..., xn, y1, ..., yk) = F(x1, ..., xn);

∀x1, ...,xn, ￢∃y1, ..., yk, so that G(x1, ..., xn, y1, ..., yk) ≠ F(x1, ..., xn).

Definition 7. The nondeterministic query complexity of the function F(X) with the

fixed helper function G(X,Y) is denoted by NDG(F) and is equal to the deterministic

complexity of the G(X,Y): NDG(F) = D(G).

An additional restriction on the deterministic query algorithm for the helper function
G(X,Y) is that after computing this function deterministically it should be possible to re-
calculate or verify the value of F(X) independently, using variable values extracted from
the black box during the calculation of G(X,Y).

Definition 8. The nondeterministic query complexity of the function F(X) is denoted by

ND(F) and is equal to the minimal nondeterministic query complexity of the function

F(X) over all possible fixed helper functions G(X,Y):

ND(F) = min G(X,Y) NDG(F).

5.2.2. Computing the Fano Plane Function

The Fano plane is a two-dimensional finite projective plane with the least number of
points and lines (Weisstein et.al., 1974). Each vertex of the Fano plane is labeled by a
variable number xi (Fig. 19).

Fig. 19. Fano plane with vertices labeled by function FANO(X) variables

124 Vasilieva

Definition 9. A line of the Fano plane with Boolean values assigned to vertices is called

constant if all vertices in a line have the same Boolean value assigned.

There are two important properties of the Fano plane with Boolean values assigned
to vertices:

• For any assignment of variable values there always is a constant line.
• For any assignment of variable values there cannot be two constant lines

assigned with the different Boolean value at the same time.

These two properties allow defining of a Boolean function based on the Fano plane.

Definition 10. Boolean function FANO(x1, ..., x7) is defined as follows. For an arbitrary

input X=(x1, ..., x7) find a constant line in the Fano plane. Value of the FANO(X)

function equals Boolean value assigned to vertices in that constant line.

An example of FANO(X) function value assignment is illustrated in Fig. 20.

Fig. 20. Illustration of FANO(X) Boolean function value assignment

The classical deterministic query complexity of the Fano function is equal to number
of variables: D(FANO)=7.

For computing the Fano plane function in an alternative nondeterministic query
model a nondeterministic helper function 1, 7 1 2 3(..., , , ,)FANOG x x y y y

with three helper

variables exists. To compute this helper function deterministically six queries are
sufficient, thus, NDGFANO(FANO) = 6.

An important property of the Fano plane function is that definition can be applied
recursively.

Definition 11. Recursive Boolean function iFANO is defined as follows:
1 1

1 2 7() (, ,...,)FANO X FANO x x x= ;

1 1 1 1 1 1 1
1 2 7() ((), (),..., ()),i i i i i i i i

FANO X FANO FANO X FANO X FANO X
− − − − − −=

where 1 1 1
1 2 7...i i i i

X X X X
− − −= .

The classical deterministic query complexity of the recursive Fano function is equal
to the number of variables: D(FANO

N
) = 7

N.
A nondeterministic helper function exists ensuring the following nondeterministic

complexity: () (3)N N

GND FANO O= .

 Quantum Query Algorithms 125

5.2.3. Open Problems

The future work is to develop and improve the nondeterministic query model introduced
in this paper. The scope of further investigation is very wide, from designing algorithms
for certain problems in this model to performing a detailed complexity analysis and
comparison to other computational models. Consideration of the Boolean function based
on projective finite geometries, similar to the Fano plane function, seems to be a
promising direction for searching of interesting examples. The most important further
step is to define a quantum counterpart of the alternative nondeterministic query model
and to investigate its properties.

6. Conclusion

In this article we presented an overview of results related to investigation of the
problems of quantum query algorithm design and complexity. Different types of
quantum query algorithms have been examined, such as exact, bounded-error and
nondeterministic.

In the first part, quantum query algorithms for computing Boolean functions have
been presented. Regarding exact quantum algorithms (for which the probability of a
correct result is invariably p = 1), there was a long-standing open question and
challenge: to establish whether a larger separation than N versus 2N can be achieved
between the classical deterministic and the quantum exact query complexity for a total
function?1 Even the design of examples with an N versus 2N complexity gap is known to
be a complex task. The majority of such examples are directly based on the involvement
of an XOR operation in the definition of a computable function. In the course of the
present research study, efforts were made to improve and develop universal techniques
for designing exact quantum query algorithms. To simplify the process of generation and
verification of quantum algorithms, a Wolfram Mathematica software program was
developed. Using this tool, two examples of Boolean functions were generated with a
small number of variables, for which the complexity of the quantum exact query
algorithm is lower than the complexity of the classical deterministic query algorithm.
Subsequently, quantum algorithm transformation methods were proposed, providing for
a significant enlargement of the set of efficiently computable Boolean functions.
Transformation methods were successfully applied to quantum algorithms for two basic
Boolean functions. The approach demonstrated may be applied to already familiar and
new exact quantum query algorithms. Additionally, an exact quantum query algorithm
for the problem of repetition code verification was presented. In this example, a gap of N
versus 2N between quantum and classical complexity is achieved.

Regarding bounded-error quantum query algorithms, an algorithm for computing
conjunctions, i.e., the Boolean function AND(x1,…,xN), was presented. This is a basic
and widely applicable function, which requires an efficient algorithm. The quantum
algorithm presented computes the conjunction of two bits through a single query with
the correct answer probability 4 / 5p = . The approach was extended by formulating a

general method for computing the conjunction of two Boolean functions with the same
probability and the number of queries equal to 1 2max((), ())

E E
Q f Q f .

1 Recently an example of a superlinear gap has been presented in (Ambainis, 2012).

126 Vasilieva

The second part is devoted to computing multivalued functions in a query model. We

proposed three types of query algorithms for computing multifunctions: definite,
randomly distributed and uniformly distributed query algorithms. Since quantum
algorithms actively employ the power of parallelism and computing in superposition,
they are naturally well suited for computing multifunctions in a distributed manner. We
presented three examples of computing multifunctions in classical and quantum versions
of the query model.

In the third part, we examined nondeterministic query algorithms. Regarding the
traditional quantum query model, we introduced a new notion of a dual nondeterministic
quantum query algorithm. This type of algorithms was studied, and the discovered
properties were applied to design efficient algorithms. Investigating the traditional
nondeterministic query model we realized that it is counter-intuitive in some sense and
does not employ the full power of nondeterminism. As an alternative, a different
definition of a nondeterministic query model was introduced. The model was
demonstrated on the basis of an example of computing the Fano plane Boolean function
obtaining a 7N versus O(3N) gap between the deterministic and the nondeterministic
query complexity.

The goals of the research are achieved on the whole; however, further improvements
are possible by continuing the study in the following directions:

• Exact quantum algorithms. It is still important to develop new quantum
algorithms that are more than two times faster than the best possible classical
deterministic algorithm. The idea for further work is to apply the combinatorial
approach for algorithm design and to enlarge the size of the quantum system.

• Computing multifunctions in the query model. In our opinion, this study
direction is the most promising. To be able to build even more efficient
algorithms, it is necessary to perform an exhaustive analysis of the properties of
functions and algorithms discovered during the research study. A very
important action line is development of convenient and efficient methods for
proving the classical complexity lower bounds for multifunctions.

• Nondeterministic query algorithms. The most important further step is to define
a quantum counterpart of the alternative nondeterministic query model and to
investigate its properties.

Acknowledgements

I wish to express sincere thanks to my supervisor professor Rūsiņš Freivalds. Special
thanks to professor Andris Ambainis and associate professor Juris Smotrovs for helpful
comments.

This work has been supported by the European Social Fund within the project
«Support for Doctoral Studies at University of Latvia».

References

Agadžanjans, R. (2010). Complexity of Quantum Query Algorithms. Doctoral Thesis,
University of Latvia.

Ambainis, A. (2004). Quantum query algorithms and lower bounds (survey article).
Proc. of FOTFS III, Trends on Logic, 23, 15-32.

 Quantum Query Algorithms 127

Ambainis, A. (2006). Polynomial degree vs. quantum query complexity. Journal of

Computer and System Sciences 72, 220–238.
Ambainis, A. (2012). Superlinear advantage for exact quantum algorithms. CoRR,

abs/1211.0721.
Ambainis, A., de Wolf, R. (2001). Average-case quantum query complexity. Journal of

Physics A 34, 6741–6754.
Ambainis, A., Childs, A., Reichardt, B., et al. (2010). Any AND-OR Formula of Size N

Can Be Evaluated in Time N1/2+o(1) on a Quantum Computer. SIAM J. Comput., 39,
2513-2530.

Buhrman, H., de Wolf, R. (2002). Complexity Measures and Decision Tree Complexity:
A Survey. Theoretical Computer Science v. 288(1), 21–43.

Childs, A., Cleve, R., Deotto, E., et al. (2003). Exponential algorithmic speedup by
quantum walk. 35th ACM Symposium on Theory of Computing, 59–68.

Cleve, R., Ekert, A., Macchiavello, C., Mosca, M. (1998). Quantum algorithms revisited.
Proc. of the Royal Society of London, A 454, 339–354.

Cover, T. M., Thomas, J. A. (1991). Elements of Information Theory. Wiley-
Interscience.

de Wolf, R. (2001). Quantum Computing and Communication Complexity. University of
Amsterdam.

de Wolf, R. (2003). Nondeterministic Quantum Query and Quantum Communication
Complexities. SIAM Journal on Computing (32(3)), 681-699.

Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal
quantum computer. Proc. of the Royal Society of London A 400.

Deutsch, D., Jozsa, R. (1992). Rapid solutions of problems by quantum computation.
Proceedings of the Royal Society of London, A 439, 553-558.

DiCarlo, L., Chow, J. M., Gambetta, J. M., et al. (2009). Demonstration of two-qubit
algorithms with a superconducting quantum processor. Nature 460,(460), 240-244.

Dixon, A., Dynes, J., Shields, A. (2008). Gigahertz decoy quantum key distribution with
1 Mbit/s secure key rate. Optics Express, 16(23).

Dubrovska, A. (2007). Application of quantum computing for efficient algorithm

construction. Master's Thesis, University of Latvia.
Dubrovska, A. (2007). Properties and Application of Nondeterministic Quantum Query

Algorithms. Proc. od SOFSEM 2007: Theory and Practice of Computer Science,

Volume II; MatFyz Press; ISBN 80-903298-9-6, 37-49.
Dubrovska, A. (2007). Quantum Query Algorithms for Certain Functions and General

Algorithm Construction Techniques. Proc. of SPIE Vol. 6573, Quantum Information

and Computation V, (SPIE, Bellingham, WA) Article 65730F.
Dubrovska, A., Mischenko-Slatenkova, T. (2006). Computing Boolean Functions: Exact

Quantum Query Algorithms and Low Degree Polynomials. SOFSEM 2006, Student

Research Forum; MatFyz Press; ISBN 80-903298-4-5, 91-100.
D-Wave Systems sells its first Quantum Computing System to Lockheed Martin

Corporation. http://www.dwavesys.com/en/pressreleases.html#lm_2011
Feynman, R. (1982). Simulating Physics with Computers. International Journal of

Theoretical Physics, 21 (No. 6/7).
Floyd, R. W. (1967). Nondeterministic Algorithms. Journal of the ACM (JACM), 14(4),

636-644.
Freivalds, R., Iwama, K. (2009). Quantum Queries on Permutations with a Promise.

Implementation and Application of Automata, Lecture Notes in Computer Science,

5642/2009, 208-216.

128 Vasilieva

Grover, L. (1996). A fast quantum mechanical algorithm for database search. Proc. of

28th STOC'96, 212–219.
Gruska, J. (1999). Quantum Computing. McGraw-Hill.
Hiskett, P., Rosenberg, D., Peterson, C. (2006). Long-distance quantum key distribution

in optical fibre. New J. Phys., 8(193).
Hopcroft, J. E., Ullman, J. (1969). Formal Languages and their Relation to Automata.

Addison-Wesley, Reading, MA.
ID Quantique SA - Network Encryption, Random Number Generators, Photon Counting.

http://www.idquantique.com/
Jin, X.-M., Ren, J.-G., Yang, B. (2010). Experimental free-space quantum teleportation.

Nature Photonics (4), 376 - 381.
Johnson, M., Amin, M., Gildert, S., et al. (2011). Quantum annealing with manufactured

spins. Nature, 473, 194–198.
Kaye, P., Laflamme, R., Mosca, M. (2007). An Introduction to Quantum Computing.

Oxford.
Kerenidis, R., de Wolf, R. (2004). Exponential Lower Bound for 2-Query Locally

Decodable Codes via a Quantum Argument. Journal of Computer and System

Sciences, 395-420.
Kravcevs, V. (2008). Quantum algorithm complexity. Doctoral Thesis, University of

Latvia.
Kushilevitz, E., Nisan, N. (1997). Communication complexity. Cambridge University

Press.
Lace, L. (2004). Enlarging gap between quantum and deterministic query complexities.

Proc. of Baltic DB&IS, 2, 81-91.
Lace, L. (2008). Quantum Query Algorithms. Doctoral Thesis, University of Latvia.
Lee, N., Benichi, H., Takeno, Y., et al. (2011). Teleportation of Nonclassical Wave

Packets of Light. Science, 332(6027), 330-333.
Lehmer, D. H., Lehmer, E. (1974). A New Factorization Technique Using Quadratic

Forms. Mathematics of Computation (28, 126), 625-635.
Nielsen, M., Chuang, I. (2000). Quantum Computation and Quantum Information.

Cambridge University Press.
Politi, A., Matthews, J., O'Brien, J. (2009). Shor’s Quantum Factoring Algorithm on a

Photonic Chip. Science, 325(5945), 1221.
Rabin, M. O., Scott, D. (1959). Finite automata and their decision. IBM. Journal of

Research and Development (3:2), 114-125.
Shor, P. W. (1997). Polynomial time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM Journal on Computing (26(5)), 1484-1509.
Simon, I. (1994). String matching algorithms and automata. Lecture Notes in Computer

Science, 814, 386–395.
Ščeguļnaja-Dubrovska, O. (2010). Models of Quantum Computation. Doctoral Thesis,

University of Latvia.
Vasilieva, A. (2009). Exact Quantum Query Algorithm for Error Detection Code

Verification. Proc. of the Fifth Doctoral Workshop on Mathematical and

Engineering Methods in Computer Science (MEMICS), ISBN 978-80-87342-04-6,
200-207.

Vasilieva, A. (2010). Quantum Query Algorithms for Relations. Proc. of the MFCS &

CSL 2010 Satellite Workshop Randomized and quantum computation, ISBN 978-80-
87342-08-4, 78-89.

 Quantum Query Algorithms 129

Vasilieva, A. (2011). Uniformly Distributed Quantum Query Algorithms for
Multifunctions. Proc. of the Annual Doctoral Workshop on Mathematical and

Engineering Methods in Computer Science (MEMICS), 86-93.
Vasilieva, A., Freivalds, R. (2011). Nondeterministic Query Algorithms. Journal of

Universal Computer Science (J. UCS), 859-873.
Vasilieva, A., Mischenko-Slatenkova, T. (2010). Quantum Query Algorithms for

Conjunctions. Proc. of the 9th International Conference UC 2010, Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, vol. 6079/2010, ISBN: 978-3-642-
13522-4, 140-151.

Weisstein, E. W. Fano Plane. From MathWorld - A Wolfram Web Resource,
http://mathworld.wolfram.com/FanoPlane.html.

Wolfram Mathematica computational software. http://www.wolfram.com/mathematica/.

Received March 12, 2013, revised July 26, 2013, accepted August 13, 2013

