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Abstract. Quantum computing is a method of computation based on the laws of quantum 
mechanics. This subfield of computer science aims to employ quantum mechanical effects for the 
efficient performance of computational tasks. In this article, we review the work by the author in a 
field of quantum algorithms development. In the first part of the article, exact and bounded-error 
quantum query algorithms for computing Boolean functions are presented. In the second part, a 
query model is applied for computing multivalued functions. The third part is devoted to 
nondeterministic query algorithms.  
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1. Introduction 

Quantum computing is a subfield of computer science based on the laws of quantum 
mechanics. It applies the quantum mechanical effects for more efficient solution of 
computational problems than in a classical way. This area of science unites disciplines 
such as physics, mathematics and computer science. In the scope of computer science 
and mathematics the theoretical aspects, the potential and the limitations of quantum 
computers are studied. At the same time, physicists are working on developing practical 
implementations of quantum computing devices. This branch of science is very topical 
because it is a proven fact that quantum computing can solve certain problems faster 
than classical computing (Shor, 1997), (Grover,1996). Although quantum computers are 
not yet available to everyone, many scientists all over the world are working to make 
them universally available in the future. The physical implementation is very complex; 
however, several quantum computer prototypes have been developed and are used to 
solve computational problems (DiCarlo et al., 2009), (Politi et al., 2009), (Johnson et al., 
2011). Nevertheless, these are still only demonstration models of quantum processors 
consisting of a small number of qubits. Theoretical results in the field of quantum 
information processing are already successfully implemented in such areas as quantum 
cryptography (Hiskett et al., 2006), (Dixon et al., 2008) and quantum teleportation (Jin et 
al., 2010), (Lee et al.,2011). Several companies assert they are prepared for marketing 
commercial quantum computing systems (IDQ, D-Wave). In spite of the progress 
achieved, there is still a long way to go until quantum computers are capable of solving 
real computational tasks. To be able to build complex and efficient quantum computer 
systems in the future, it is necessary to develop and improve theoretical foundations of 
quantum computing today. 
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1.1. Research Object 

Algorithm complexity theory is a sub-field of computer science investigating the 
complexity of computational problems. One of the main tasks in complexity theory is 
designing efficient algorithms. The main object of the research is the query model 
(Buhrman and de Wolf, 2002). In this model, the definition of the function f(X) is 

known, but input 1 2( , ,..., )NX x x x=
 
is hidden in a black box. Input values can be 

accessed only by querying the black box about xi values. In the process of computation, 
the query algorithm asks questions about variable values, receives answers from the 
black box, performs the computation, and finally produces the function value output. 
The goal is to develop a query algorithm that would compute the value of a certain 
function correctly for an arbitrary input. The complexity of a query algorithm is 
measured by the number of questions it asks based on worst-case input. 

There are examples of efficient and impressive quantum algorithms already 
developed. The most famous are Shor’s integer factoring algorithm (Shor, 1997), 
Grover’s search algorithm (Grover, 1996) and algorithm for XOR function (Buhrman 
and de Wolf, 2002). Other examples of lower and upper bound estimations of quantum 
query algorithm complexity can be found in (Nielsen and Chuang, 2000), (de Wolf, 
2001), (Ambainis and de Wolf, 2001), (Ambainis, 2004), (Ambainis, 2006), (Kravcevs, 
2008), (Ščeguļnaja-Dubrovska, 2010). 

1.2. Objectives of the Research 

The overall goal of the research is to develop new, fast and efficient quantum algorithms 
for solving specific computational problems, as well as to improve the general 
construction techniques for algorithms. It is important to work out an approach for 
designing efficient quantum algorithms for arbitrary functions. A collection of existing 
methods (including, for instance, a method for evaluation of NAND formulas (Ambainis 
et al., 2010)) is not sufficiently large and the computation of arbitrary function is a 
complex task. The research is aimed at extending the collection of quantum algorithm 
constructing methods by introducing new methods. 

There exist different types of query algorithms: deterministic, probabilistic, and 
nondeterministic, each exhibiting a specific behavior and defining different conditions 
for an algorithm to produce the correct result. In the quantum query model the following 
counterparts are studied: exact, bounded-error and nondeterministic quantum query 
algorithms. In this respect the aim of the study is to analyze relations between different 
complexity measures, to compare the classical and the quantum complexity of specific 
computational problems and finally to find examples with large separation between the 
optimal classical complexity and the quantum complexity of the same problem. 

1.3. Summary of Results 

The results consist of three parts: 
• Quantum query algorithms for Boolean functions. 
• Quantum query algorithms for multivalued functions. 
• Nondeterministic query algorithms. 
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Summary of the first part of results:  
• Several exact quantum query algorithm construction methods are presented, 

including a set of basic efficient algorithms for finite functions. The algorithm 
transformation and concatenation methods are helpful for enlarging the set of 
efficient exact algorithms. The methods can be used for generating examples of 
N versus 2N gaps between quantum and classical query complexity of a 
function. 

• An exact quantum algorithm for verification of repetition codes is developed. 
The algorithm complexity is N while classically 2N queries are required. 

• A method for constructing a bounded-error quantum query algorithm for 
conjunction 1 2f f f= ∧  using exact quantum query algorithms for sub-

functions f1 and f2 is developed. The correct probability of a correct answer is p 
= 4/5 and the complexity is equal to the largest complexity of sub-algorithms:

1 2max( ( ), ( ))E EQ f Q f . 

In the second part of the article, quantum query algorithms for computing 
multivalued functions are examined: 

• Different types of algorithms for computing multivalued functions are 
introduced. 

• Examples are demonstrated where the quantum query algorithm complexity is 
lower than in the classical case. 

In our opinion, this section contains the most important results. The main result is the 
example developed where the quantum query complexity of the function is N, while 
classically 3N queries are required to compute the same function. Function is not based 
on XOR operation and there is no error probability for an algorithm. 

In the third part, nondeterministic query algorithms are examined. First, the results of 
designing algorithms according to the traditional nondeterministic query model are 
presented. A new type of algorithm is introduced: the dual nondeterministic quantum 
query algorithm. The properties of such algorithms are investigated. Examples of 
efficient dual nondeterministic quantum query algorithms are demonstrated. Second, a 
new alternative model for nondeterministic computation is proposed. The elaborated 
model is demonstrated through the example of computing a specific Boolean function, 
for which the gap between deterministic and nondeterministic query complexity is 
demonstrated to be 7N versus O(3N). 

Most part of results has been already published and we provide references to 
publications at the beginning of each section. More details and full proofs are available 
in referenced papers and (Vasilieva, 2012). 

2. Theoretical Background 

2.1. Classical Decision Trees 

The classical version of the query model is known as decision trees. The definition of the 
Boolean function f(X) is known, but the black box contains the input 

1 2( ,  ,  ...,  )NX x x x=  and can be accessed by querying xi values. The algorithm must 

allow determination of the correct value of a function for an arbitrary input. The 
complexity of the algorithm is measured by the number of queries on the worst-case 
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input. For more details, see the survey on decision tree complexity (Buhrman and de 
Wolf, 2002). 

A deterministic decision tree is a tree with internal nodes labeled with variables xi, 
arrows labeled with possible variable values and leafs labeled with function values. The 
deterministic decision tree always follows the same computational path for each input 
and produces correct result with probability p = 1. The deterministic complexity of a 
function f is denoted by D(f). 

A probabilistic decision tree may contain internal nodes with a probabilistic 
branching, i.e., multiple arrows exiting from the above node, each one labeled with a 
probability for algorithm to follow. The total probability to obtain a result r after 
application of an algorithm on certain input X equals the sum of probabilities for each 
leaf labeled with r to be reached.  

A nondeterministic decision tree differs from the deterministic one by an additional 
possibility that there can be more than one arrow labeled with the same value exiting 
each tree vertex. The nondeterministic decision tree computes Boolean function f(X), if 
for an arbitrary input X it is true that: 

• if f(X)=1, then a path exists from the root to the leaf with result 1; 
• if f(X)=0, then a path exists from the root to the leaf with result 0; 
• there is no path from the tree root to the leaf with incorrect function value. 

2.2. Quantum Computing 

The basics of quantum computing are available in the following books and papers: 
(Feynman, 1982), (Deutsch, 1985), (Cleve et al., 1998), (Gruska, 1999), (Childs et al., 
2003), (Kaye et al., 2007). 

An n-dimensional quantum pure state is a unit vector in an n-dimensional Hilbert 

space. Let 0 , 1 ,..., 1n −  be an orthonormal basis for n
� . Then, any state can be 

expressed as 
1

0

n

ii
iψ α

−

=
=∑  for some n

i ∈�α . The norm of ψ  is 1: 

21

0
1

n

ii
α

−

=
=∑ . States 0 ,..., 1n −  are called basis states. Any state of the form 

1

0

n

ii
iα

−

=∑  is called a superposition of 0 ,..., 1n − . The coefficient iα  is called an 

amplitude of i .  

The state of a quantum system can be changed by applying the unitary 

transformation. The unitary transformation U is a linear transformation on n
�  that maps 

vector of unit norm to another or the same vector of unit norm. Formally, unitary 
transformation is represented by a unitary matrix. 

There are various types of the quantum measurement; the quantum query model uses 
the simplest one – the full measurement in the computation basis. Performing this 
measurement on a state 0 10 ... 1n nψ α α −= + + −   produces the outcome i with 

probability 
2

iα . The measurement changes the state of the system to i  and destroys 

the original state ψ . 
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2.3. Quantum Query Model 

The quantum query model is also known as the quantum black box model. This model is 
the quantum counterpart of decision trees and is intended for computing Boolean 
functions. For a detailed description, see (Buhrman and de Wolf, 2002), (Ambainis, 
2004), (Cleve et al., 1998), (Kaye et al., 2007), (de Wolf, 2001). 

A quantum computation with T queries is a sequence of unitary transformations: 

0 0 1 1 1 1              , , , , ... , , ,T T TU Q U Q U Q U− − . 

Ui's can be arbitrary unitary transformations not depending on input bits. Qi's are 

unitary query transformations. Computation starts in the initial state 0
�

. Then 

transformations U0, Q0,…, QT-1, UT  are applied and the final state measured. 
In algorithms created by the present research, the following definition of a query 

transformation is used - if the input is a state ii
iψ α=∑ , then the output is:  

( )
1

0

1 i

n

i i

i

i
ϕγ α

−

=

= −∑ , where 1{ ,..., ,0,1}i Nx xϕ ∈ . 

In other words, for each query for each basis state i
 
a variable assignment i

ϕ
 
may 

be arbitrarily chosen. It is also allowed to skip the variable assignment for any particular 
basis state, i.e. to set 0

i
ϕ =  for i ; or inverse amplitude value sign by setting 1

i
ϕ =

 
for 

a particular i . Depending on the value of the assigned variable, the sign of the 

amplitude of the quantum basis state either changes to the opposite or remains 
unchanged. 

Formally, any transformation has to be defined by a unitary matrix: 

( )

( )

( )

0

1

1

1 0 ... 0

0 1 ... 0

... ... ... ...

0 0 ... 1 n

Q

ϕ

ϕ

ϕ −

 − 
 

− =
 
 
 − 

 

After all query transformations Qi are applied (alternating with fixed intermediate 
unitary transformations Ui), the last remaining action is to extract the result value from 
the final quantum state. It is achieved by measuring this state and interpreting the 
quantum basis state observed after that. A value of a function is assigned to each basis 
state. The probability of obtaining the result r after applying an algorithm on input X 
equals the sum of squared moduli of all amplitudes, which correspond to outputs with 
value r. 

Quantum query algorithms can be conveniently represented in diagrams, and this 
approach is used throughout the paper. Fig. 1 demonstrates a graphical representation of 
an algorithm in a general form. 
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Fig. 1. Graphical representation of a quantum query algorithm 

A quantum query algorithm computes f exactly if the output equals f(X) with 

probability 1p = , for all {0,1}NX ∈ . Complexity is equal to the number of queries and 

is denoted by QE(f) (Buhrman and de Wolf, 2002). 
A quantum query algorithm computes f with bounded-error if the output equals f(X) 

with probability 2 / 3p > , for all {0,1}NX ∈ . Complexity is equal to the number of 

queries and is denoted by Qp(f) (Buhrman and de Wolf, 2002). 

3. Quantum Query Algorithms for Boolean Functions 

In this section, the results of designing different types of quantum query algorithms are 
presented, simplifying the task of algorithm construction for an arbitrary function. 

3.1. Exact Quantum Query Algorithms 

This section is based on the papers (Dubrovska and Mischenko-Slatenkova, 2006), 
(Dubrovska, 2007), (Vasilieva, 2009). 

Exact algorithms always produce a correct answer with probability p = 1. The error 
probability in algorithms of this kind is not allowed, the said limitation significantly 
complicating the design of the above algorithms. There are a significant number of 
efficient quantum algorithms with an error probability already developed. Applying 
those, the quantum algorithm speedup comparing to the best known classical algorithm 
is known to be quadratic (Grover, 1996) or even exponential (Shor, 1997). However, in 
certain types of computer software, we cannot allow even a small probability of error, 
for example, in spacecraft, aircraft, or medical software. For this reason, the 
development of exact algorithms is very important. By contrast with non-exact 
algorithms, the largest known complexity separation between the quantum exact and 
classical deterministic algorithm until recently was only N versus 2N for XOR function 

(Deutsch, 1985), (Cleve, 1998). Another category of exact quantum algorithms are 
algorithms for promise problems. In such problems, the domain of the function is 
restricted, i.e. input is promised to belong to a subset of all possible inputs. Examples of 
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exact quantum query algorithms for promise problems can be found in (Deutsch and 
Jozsa, 1992), (Simon, 1994), (Freivalds and Iwama, 2009). 

A long standing open question was whether it is possible to achieve a larger gap 
between quantum exact and classical deterministic query complexity of a total function 
with no error allowed. The conjecture about relation between complexity measures was 
the following:  

( )
( )

2E

D f
Q f ≥ . 

Many authors have worked to either prove or refute this conjecture. This problem has 
been considered, for instance, in (Agadžanjans, 2010), (Lace, 2004), (Lace, 2008). 
Examples of a borderline gap of N versus 2N have been presented, but for a long time 
nobody has been able to improve this result. Just recently a first example was described 
in a paper (Ambainis, 2012) presenting an algorithm with the superlinear gap between 
classical deterministic and quantum exact algorithm complexity: N versus O(N0.8675...). 

Our contribution consists of: 
• new examples of N versus 2N complexity separation; 
• techniques for enlarging a set of efficiently computable Boolean functions; 
• methods for generating algorithms producing an infinite set of instances of 

N versus 2N complexity separations. 
To simplify calculations in the process of algorithm development and debugging, i.e. 

to automate the verification process, we developed a simple program using Wolfram 
Mathematica software. 

3.1.1. Basic Exact Quantum Query Algorithms 

We start with exact quantum query algorithms for two problems of a finite input size. 
Both algorithms are of lower complexity than the best possible classical algorithms. 
Further these algorithms are used as a base for building advanced algorithms. 

Function 1: 3 1 2 2 3( ) ( ) ( )EQUALITY X x x x x= ¬ ⊕ ∧¬ ⊕ . 

Classical deterministic complexity: D(EQUALITY3) = 3. 
An exact quantum query algorithm with two questions is developed (Fig. 2). 

 

Fig. 2. Exact quantum query algorithm with two queries for EQUALITY3 

Function 2: ( ) ( )4 1 2 3 4 1 2 3 4_ ( , , , )PAIR EQUALITY x x x x x x x x= ¬ ⊕ ∧¬ ⊕ . 

Classical deterministic complexity: D(PAIR_EQUALITY4) = 4. 
An exact quantum query algorithm with two questions is developed (Fig. 3). 
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Fig. 3. Exact quantum query algorithm with two queries for PAIR_EQUALITY4 

3.1.2. Algorithm Transformation Methods 

Quantum query algorithm transformation methods are introduced useful for enlarging a 
set of exactly computable Boolean functions. Each method receives an exact quantum 
query algorithm on input, processes it according to the rules producing as the result a 
slightly different exact algorithm computing another function. 

Methods are the following: 
• Output value assignment inversion. 
• Output value assignment permutation. 
• Permutation of query variables. 

Applying transformation methods to two basic algorithms produced two sets of 
Boolean functions. 

Set QFunc3 – eight three-argument Boolean functions, where for each function there 
is an exact quantum query algorithm, which computes it with two queries. 

Set QFunc4 – twenty four four-argument Boolean functions, where for each function 
there is an exact quantum query algorithm, which computes it with two queries. 

Table 1. Results of applying transformation methods to EQUALITY3 algorithm 

X 
EQUALITY 

Output value assignment 
permutation 

Output value assignment inversion 

(1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1) (0,1,1,1) (1,0,1,1) (1,1,0,1) (1,1,1,0) 

000 1 0 0 0 0 1 1 1 
001 0 0 0 1 1 1 1 0 
010 0 0 1 0 1 1 0 1 
011 0 1 0 0 1 0 1 1 
100 0 1 0 0 1 0 1 1 
101 0 0 1 0 1 1 0 1 
110 0 0 0 1 1 1 1 0 
111 1 0 0 0 0 1 1 1 
D(f) 3 3 3 3 3 3 3 2 
QE(f) 2 2 2 2 2 2 2 2 

 
Transformation methods can be applied to every new exact quantum query 

algorithm, thus constructing a larger set of efficiently computable Boolean functions. 
Moreover, exact algorithms obtained this way further can be used as building blocks for 
more complex algorithms. 
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3.1.3. Exact Quantum Query Algorithm for Verifying Repetition Code 

A repetition code is a data transmission error detection scheme. (r, N) code repeats each 
N-bit block r times (Cover and Thomas, 1991). Verification procedure for the repetition 
code involves checking whether in each group of r the consecutive blocks of size N all 
blocks are equal. 

(2,1) repetition code verification procedure is represented as the process of 
computing the following Boolean function (N = 2k): 

( ) ( ) ( ) ( )1 2 3 4 5 6 2 -1 21,    ...  
( )

0 ,                                                                           
k k

N

if x x x x x x x x
VERIFY X

otherwise

 = ∧ = ∧ = ∧ ∧ =
= 


 

We propose an exact quantum query algorithm computing VERIFYN function using 
N/2 queries, while classically N queries are required (Fig. 4). 

 

Fig. 4. Exact quantum algorithm for computing the Boolean function VERIFYN 

(r,1) repetition code verification procedure is represented as the process of 
computing the following Boolean function: 

( ) ( )1 ( 1) 11,  ,..., ...  ,...,
( )

0 ,                                                                                 

r r r N r Nrr
r N

if EQUALITY x x EQUALITY x x
VERIFY X

otherwise

− +
⋅

 ∧ ∧
= 


 

Theorem 1.  ( )r
r ND VERIFY rN⋅ = . 

Proof idea. By function sensitivity on any accepting input. 

Theorem 2. ( ) ( 1)r
E r NQ VERIFY r N⋅ = − . 

Proof idea. We use the similar construction as in Fig. 4, but insert algorithms for 
EQUALITYr as sub-routines instead of algorithms for XOR2. 
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3.1.4. Algorithm Concatenation Methods 

Finally, we generalize described approaches for quantum query algorithm design and 
present methods for generating complex quantum algorithms from simple building 
blocks. Specifically, these methods can be used for generating examples of N versus 2N 
gaps between quantum and classical query complexity of the function. 

Given an exact quantum query algorithms 1 2,  QA QA   computing Boolean functions 

f1(X), f2(Y) with complexity 1 1( )
E

Q QA m= , 2 2( )
E

Q QA m=
 
it is possible to build a new 

exact quantum query algorithms with complexity 3 1 2( )
E

Q QA m m= + for computing the 

following Boolean functions: 
• conjunction of basic functions: 1 2( ) ( ) ( )f XY f X f Y∧ = ∧ ; 

• disjunction of basic functions: 1 2( ) ( ) ( )f XY f X f Y∨ = ∨ ;  

• XOR of basic functions: 1 2( ) ( ) ( )f XY f X f Y⊕ = ⊕ . 

Fig. 5 demonstrates constructions for computing a conjunction and a disjunction of 
basic functions. In case of XOR operation, instances of the algorithm QA2 have to be 
concatenated to algorithm’s QA1 outputs in a similar way. However, this time the second 
algorithm has to be concatenated to all outputs – both, the accepting and the rejecting. 
Additionally, for QA2 instances concatenated to accepting outputs of QA1, the result 
values assigned to the states have to be inversed. 

 

Fig. 5. Algorithm concatenation methods for computing conjunction and disjunction 

3.2. Bounded-Error Quantum Query Algorithms 

This section is based on the paper (Vasilieva and Mischenko-Slatenkova, 2010). 
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Every Boolean function can be presented as a logical formula in a conjunctive 
normal form (CNF). Formula is in CNF if it is a conjunction (ANDs) of disjunctions 
(ORs) of variables or negated variables. Therefore, a fast and efficient algorithm for 
conjunction is necessary. Algorithms for computing this kind of function have been 
previously presented in (Dubrovska, 2007), (Kerenidis and de Wolf, 2004), (Lace, 
2008).  

We present a bounded-error quantum query algorithm for computing the conjunction 

1 2( ) ( ) ( )f XY f X f Y= ∧ , which improves previous results. 

Fig. 6 presents a quantum algorithm, which computes the conjunction of two bits 

1 2 1 2( , )f x x x x= ∧  using one query with correct answer probability p = 4/5.  

 

Fig. 6. Quantum algorithm computing the conjunction of two bits 

Classical complexity lower bound is the following: the Boolean function 

2 1 2( , )AND x x  can be computed by a randomized classical decision tree with one query 

with the maximum probability p = 2/3. 
During the analysis of an algorithm a way to generalize it for computing the 

conjunction of sub-functions was discovered. The following algorithm construction 
method is formulated. 

Given exact quantum query algorithms QA1, QA2 for computing Boolean functions  
f1(X1), f2(X2)  with complexity 1 1( )

E
Q QA m= , 2 2( )

E
Q QA m=  it is possible to build a 

quantum query algorithm computing a function 1 2( ) ( ) ( )f XY f X f Y= ∧  with 

probability p = 4/5 and complexity 1 2( ) max( , )
E

Q QA m m= . 

It should be noted that the method is applicable to basic exact algorithms satisfying 
specific properties. 

The most significant advantage of this method is that the overall algorithm 
complexity does not exceed the greatest complexity of sub-algorithms. To compute a 
composite function, additional queries are not required. However, the cost for efficient 
computing is the error probability. 

Proposed quantum query algorithm for computing conjunction is more efficient than 
the best possible classical deterministic analogue and ensures better correct answer 
probability than the best possible classical probabilistic algorithm. 

Further action line for algorithm improvement is the following: 
• to extend the number of clauses of computable conjunction to N; 
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• to increase the correct answer probability. 

4. Quantum Query Algorithms for Multivalued Functions 

This chapter is based on the papers (Vasilieva, 2010), (Vasilieva, 2011). 
The query model is mostly used to compute Boolean functions. However it is 

possible to apply the query model to functions with larger domain and wider range as 
well. In this section, we consider even a more uncommon case: computing of 
multivalued functions (multifunctions). The study of the query complexity of 
multifunctions has been inspired by the book on communication complexity (Kushilevitz 
and Nisan, 1997). 

Multifunction is a left-total binary relation associating values from the domain set 
with one or more values from a range set. Function is simply a special case of 
multifunction, where each value from a domain set is mapped to no more than one value 
from a range set. 

We consider the following kind of multifunctions: 

( ) :{0,1}N
M X →� , where 1 2( , ,..., )NX x x x= , {0,1}ix ∈ . 

The major motivation for studying query complexity of multivalued function is a 
potential possibility to achieve a larger gap between quantum and classical query 
complexity than N versus 2N. 

We analyze the possibility of computing multivalued functions in the query model 
and propose different types of query algorithms for this task. Three examples are 
demonstrated where the quantum query algorithm complexity is lower than the classical 
query algorithm complexity. 

4.1. Computing Multifunctions in a Query Model 

Computation of usual functions in a query model has been studied in detail: for each 
input, the algorithm has to output correct function value with a certain probability. 
However, it is not obvious how to extend a query model to compute multivalued 
functions. We propose three different ways of description on how the query algorithm 
computes a multifunction and define three types of query algorithms based on these 
options.  

Definition 1. The query algorithm computes multifunction M(X) in a definite manner, if 

for each X it outputs one certain correct value from the result set with probability p = 1. 

The classical query complexity is denoted by CD(M). The quantum query complexity is 

denoted by QD(M). 

The type of the classical decision tree computing a multifunction in a definite manner 
is the deterministic decision tree. In the quantum version, the corresponding algorithm 
type is the exact quantum query algorithm. 

Definition 2. The query algorithm computes multifunction M(X) in a randomly 

distributed manner, if for each X it outputs arbitrary values from a result set with 

arbitrary probabilities (for each value such probability has to be positive) never 

delivering an incorrect value. The classical query complexity is denoted by CRD(M). The 

quantum query complexity is denoted by QRD(M). 
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The above definition is more natural and takes account of the essence of 
multifunction as a mathematical object. In a classical query model, probabilistic decision 
trees should be used to produce the described behavior. Quantum query algorithms seem 
to be better suited for computing multifunctions in a distributed manner because of the 
superposition principle. 

Definition 3. The query algorithm computes multifunction M(X) in a uniformly 

distributed manner, if for each X it outputs each value from a result set with equal 

probability never delivering an incorrect value. The classical query complexity is 

denoted by CUD(M). The quantum query complexity is denoted by QUD(M). 

This definition poses a serious constraint to designing of a query algorithm. 
However, in our opinion this definition is the most reasonable in the sense of computing 
a multifunction and algorithms of that type have the most practical applications. 

4.2. Example 1 of Computing a Multifunction 

First, a three-variable multifunction 3
1 :{0,1} {1,2,3,4}M →  is examined, that is defined 

in Table 2. 
The classical uniformly distributed query algorithm complexity lower bound is the 

following:  CUD(M1) = 2. 
The quantum query algorithm is demonstrated in Fig. 7 that computes the 

multifunction using one query: QUD(M1) = 1. 

Table 2. Definition of the multifunction M1 

X M1(X) X M1(X) 
000 { 1 , 3 } 100 { 2 , 4 } 
001 { 1 , 4 } 101 { 2 , 3 } 
010 { 2 , 3 } 110 { 1 , 4 } 
011 { 2 , 4 } 111 { 1 , 3 } 

 

 

Fig. 7. Uniformly distributed quantum algorithm for multifunction M1 
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Subsequently, multifunction is generalized to the case of N variables: 

1
1 : {0,1} {1, 2,..., 2( 1)}GEN N

M N→ − , where 

1
1 1

1
1

 1 :  if ( 0),  then ( ) 2( 1) 1

                                               otherwise ( ) 2( 1)               

GEN
i

GEN

i N x x M X i

M X i

∀ < ≤ ⊕ = = − −

= −
 

Classically two queries are required to compute the multifunction in a uniformly 

distributed manner: CUD( 1
1
GEN

M ) = 2. 

The quantum query algorithm is demonstrated in Fig. 8 that computes the 

multifunction using one query: QUD( 1
1
GEN

M ) = 1. 

The second generalization of multifunction is the following: 
22

1 :{0,1} {1,2,..., 2( 1)}GEN N
M N→ − , where 

1 2 ( 1) 1 ( 1) 2 ( 1)

2
1

2
1

 1 :  if (( ... ) ( ... ) 0),  

                    then ( ) 2( 1) 1

                    otherwise ( ) 2( 1)          

N i N i N i N N

GEN

GEN

i N x x x x x x

M X i

M X i

− + − + − +∀ < ≤ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ =

= − −

= −

 

The classical algorithm complexity lower bound is: CUD( 2
1
GEN

M ) = 2N. 

The quantum query algorithm is demonstrated in Fig. 9 that computes the 

multifunction using N queries: 2
1( )GEN

UDQ M N≤ . 

 

 

Fig. 8. Uniformly distributed quantum algorithm for multifunction 1
1
GEN

M  
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Fig. 9. Uniformly distributed quantum algorithm for multifunction 2
1
GEN

M  

4.3. Example 2 of Computing a Multifunction 

First, a four-variable multifunction 4
2 : {0,1} {1, 2,3, 4}M →

 
is examined, that is defined 

in Table 3. 

Table 3. Definition of the multifunction M2 

X M2(X) X M2(X) 
0000 {1} 1000 {1,2,3,4} 
0001 {1,2,3,4} 1001 {4} 
0010 {1,2,3,4} 1010 {2} 
0011 {3} 1011 {1,2,3,4} 
0100 {1,2,3,4} 1100 {3} 
0101 {2} 1101 {1,2,3,4} 
0110 {4} 1110 {1,2,3,4} 
0111 {1,2,3,4} 1111 {1} 

 
The classical uniformly distributed query algorithm complexity lower bound is:

2( ) 3UDC M ≥ . 

The quantum query algorithm is demonstrated in Fig. 10 that computes the 
multifunction using one query: 2( ) 1UDQ M = . 
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Fig. 10. Uniformly distributed quantum algorithm for multifunction M2 

Subsequently, multifunction is generalized to the case of N variables: 
1 4

2 :{0,1} {1,2,3,4}GEN N
M → . 

Imagine that 4N variables are arranged on four vertical lines (v-lines) in such a way 
that: 

4{0,... 1}, {1,2,3,4}: i ki N k x +∀ ∈ − ∀ ∈
 
belongs to v-line number k. 

For example, 1 5 9 13, , , ,...x x x x  are placed on the 1st 
v-line, 2 6 10 14, , , ,...x x x x - on the 

2nd, and so on (see Fig. 11 for illustration).  
The result set for each input X of the multifunction is defined as follows: 

1. 1
2 ( ) {1}GEN

M X = , if all four v-lines of X contain either odd or even number of 

“1”.  

2. 1
2 ( ) {2}GEN

M X = , if 1st and 3rd 
v-lines of X have odd number of “1” and 2nd and 

4th have even number of “1”, or vice versa: 1st an 3rd – even and 2nd and 4th - 
odd.  

3. 1
2 ( ) {3}GEN

M X = , if 1st and 2nd 
v-lines of X have odd number of “1” and 3rd and 

4th have even number of “1”, or vice versa: 1st and 2nd – even and 3rd and 4th - 
odd.  

4. 1
2 ( ) {4}GEN

M X = , if 1st and 4th 
v-lines of X have odd number of “1” and 2nd and 

3rd have even number of “1”, or vice versa: 1st and 4th - even and 2nd and 3rd - 
odd.  

5. In all other cases, 1
2 ( ) {1, 2,3, 4}GEN

M X = . 

The classical algorithm complexity lower bound is: 1
2( ) 3GEN

UDC M N≥ . 

The quantum query algorithm is demonstrated in Fig. 11 that computes multifunction 

in a uniformly distributed manner using N queries: 1
2( )GEN

UDQ M N≤ . 

 

Fig. 11. Uniformly distributed quantum algorithm for multifunction 1
2
GEN

M  
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Finally, another one generalization on multifunction is created and as a result a 

different multifunction 2
2 :{0,1} {1,2,..., }GEN NM N→

 
is obtained. 

This time randomly distributed query algorithm complexity is examined. 

The classical algorithm complexity lower bound is: 2
2( ) 1.

2
GEN

RD

N
C M ≥ +  

The quantum query algorithm is demonstrated in Fig. 12 that computes multifunction 

in randomly distributed manner using one query: 2
2( ) 1GEN

RDQ M = . 

 

Fig. 12. Randomly distributed quantum algorithm for multifunction 
2

2
GEN

M  

4.4. Example 3 of Computing a Multifunction 

The last example in our opinion is the most interesting. First, a multifunction 
8

3 :{0,1} {1,2,3,4}M →
 
is examined. Table 4 describes the rules, where exactly one rule 

is true for each input X. In the last column of the corresponding table row, the 
multifunction result set for examined input X is specified. 

Classically six queries are required to compute the multifunction in a uniformly 
distributed manner: 3( ) 6UDC M = . 

The quantum query algorithm is developed (Fig. 13) that computes multifunction 

using two queries: 3( ) 2UDQ M ≤ . 

 

Fig. 13. Uniformly distributed quantum algorithm for multifunction M3 
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Table 4. Definition of the multifunction M3 

Rules for input 1 8( ,..., )X x x=  Result set M3(X) 

1 2 3 4 5 7( ) &( )x x x x x x= = = =  {1,2} 

1 2 3 4 5 7( ) &( )x x x x x x= = = ≠  {3,4} 

1 2 3 4 1 3 5 7( & & ) &( )x x x x x x x x= = ≠ =  {3,4} 

1 2 3 4 1 3 5 7( & & ) &( )x x x x x x x x= = ≠ ≠  {1,2} 

1 2 3 4 1 3 6 7( & & ) &( )x x x x x x x x≠ = = =  {1,4} 

1 2 3 4 1 3 6 7( & & ) &( )x x x x x x x x≠ = = ≠  {2,3} 

1 2 3 4 1 3 6 7( & & ) &( )x x x x x x x x≠ = ≠ =  {2,3} 

1 2 3 4 1 3 6 7( & & ) &( )x x x x x x x x≠ = ≠ ≠  {1,4} 

1 2 3 4 1 3 5 8( & & ) &( )x x x x x x x x= ≠ = =  {1,4} 

1 2 3 4 1 3 5 8( & & ) &( )x x x x x x x x= ≠ = ≠  {2,3} 

1 2 3 4 1 3 5 8( & & ) &( )x x x x x x x x= ≠ ≠ =  {2,3} 

1 2 3 4 1 3 5 8( & & ) &( )x x x x x x x x= ≠ ≠ ≠  {1,4} 

1 2 3 4 1 3 6 8( & & ) &( )x x x x x x x x≠ ≠ = =  {1,2} 

1 2 3 4 1 3 6 8( & & ) &( )x x x x x x x x≠ ≠ = ≠  {3,4} 

1 2 3 4 1 3 6 8( & & ) &( )x x x x x x x x≠ ≠ ≠ =  {3.4} 

1 2 3 4 1 3 6 8( & & ) &( )x x x x x x x x≠ ≠ ≠ ≠  {1,2} 

 
Subsequently, two generalizations of quantum algorithm are developed. 
The first generalization is based on quantum parallelism and computes 8N-variable 

multifunction. Quantum algorithm uses two queries to compute the multifunction (Fig. 
14). Classically, six queries are required. 

 

Fig. 14. Uniformly distributed quantum algorithm for multifunction 1
3
GEN

M  
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The idea of the second generalization is to substitute every xi by 1 2 ... :iN
i i ix x x⊕ ⊕ ⊕  

8 81 2 12 1 1 1 1 1
1 2 8 3 1 83 1 2 8 1 8( ,..., , ,..., ,......, ,..., ) ( ... ,......, ... ).N NN N NGEN

M x x x x x x M x x x x= ⊕ ⊕ ⊕ ⊕
 

The classical algorithm complexity lower bound is: 2
3( ) 6GEN

UDC M N= . 

The quantum query algorithm is developed (Fig. 15) that computes multifunction 

using 2N queries: 2
3( ) 2GEN

UDQ M N≤ . 

 

Fig. 15. Uniformly distributed quantum algorithm for multifunction 2
3
GEN

M  

5. Nondeterministic Query Algorithms 

A nondeterministic finite automaton, as introduced in (Rabin and Scott, 1959), is a 
machine with many choices in its movements. On every stage it may choose one of 
several further internal states. The nondeterministic machine accepts a tape if there is at 
least one winning combination of choices of states leading to a designated final state. 
This is a traditional point of view on nondeterminism. In the first part of the section, 
traditional nondeterministic quantum query model is examined. 

In (Floyd, 1967), nondeterministic algorithms are considered conceptual devices for 
simplifying the design of backtracking algorithms. The above study supports a view that 
algorithms are nondeterministic not in the sense of being random, but in the sense of 
having a free will. In the second part of the section, the above mentioned free will is 
investigated and alternative definition of nondeterministic query algorithm is proposed. 

In (Hopcroft and Ullman, 1969), the detailed definitions of nondeterministic finite 
automata, pushdown automata, Turing machine, and related results in complexity theory 
are provided. 

5.1. Traditional Nondeterministic Quantum Query Model 

This section is based on the paper (Dubrovska, 2007). 
Nondeterministic quantum query algorithms (NQQA) were examined in (de Wolf, 

2003). For instance, it was proved that it is possible to compute a function 
( ) 1  1f X X= ⇔ ≠  

using one query for all N, though it is proved that the best classical nondeterministic 
algorithm requires all N questions.  

Definition 4. (de Wolf, 2003) A nondeterministic quantum query algorithm for f is 

defined to be a quantum algorithm that outputs 1 with positive probability if ( ) 1f X =  

and that always outputs 0 if ( ) 0f X = . 

NQ1(f) denotes the query complexity of a nondeterministic quantum algorithm for f. 
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5.1.1. Dual Nondeterministic Quantum Query Algorithms 

We introduce the concept of a dual nondeterministic quantum query algorithm and study 
the relations between complexity of exact, nondeterministic and dual nondeterministic 
quantum query algorithms. 

Definition 5. A dual nondeterministic quantum query algorithm for f is defined to be a 

quantum algorithm that outputs 0 with positive probability if ( ) 0f X =
 
and that always 

outputs 1 if ( ) 1f X = . 

NQ0(f) denotes the query complexity of a dual nondeterministic quantum algorithm 
for f. 

5.1.2. Properties of NQQA 

We present several theorems related to nondeterministic query complexity. The most 
important results are related to computing the following composite functions: 

 

Theorem 3. Let Q1 be an exact quantum query algorithm that computes a Boolean 

function f with k queries. Consequently, a dual nondeterministic quantum query 

algorithm Q2 exists, computing a function MULTI_ANDm(f) with the same k queries for 

all m. 

Theorem 4. For an arbitrary Boolean function f, 

0( _ ( )) ( )m ENQ MULTI AND f Q f≤ . 

Theorem 5. Let Q1 be an exact quantum query algorithm that computes Boolean 

function f with k queries. Consequently, a nondeterministic quantum query algorithm Q2 

exists computing the function MULTI_ORm(f) with the same k queries for all m. 

Theorem 6. For an arbitrary Boolean function f, 

1( _ ( )) ( )m ENQ MULTI OR f Q f≤ . 

Theorem 7. Let fi be an arbitrary Boolean function. Let us examine a function 

1 2 ... nF f f f= ∧ ∧ ∧ . A dual nondeterministic quantum query algorithm Q exists 

computing F with 1 2E E E nmax(Q ( f ),Q ( f ),...,Q ( f ))  queries. 

Theorem 8. Let fi be an arbitrary Boolean function. Let us examine a function

1 2 ... nF f f f= ∨ ∨ ∨ . A nondeterministic quantum query algorithm Q exists computing F 

with 1 2E E E nmax(Q ( f ),Q ( f ),...,Q ( f ))  queries. 
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5.1.3. Application of NQQA Properties 

In this section, we present several examples of dual nondeterministic quantum query 
algorithms that are better than the best possible classical counterparts. 

In the first example, the following Boolean function is considered: 

7 1 2 3 4 5 6 7 1 2 1 3 4 5 6 7( , , , , , , ) ( ( ) ( )) (( ) ( ))H x x x x x x x x x x x x x x x= ¬ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ . 

Classical deterministic complexity is 7( ) 7D H = . 

A dual nondeterministic quantum algorithm is demonstrated in Fig. 16 computing H7 
using two queries. 

 

Fig. 16. Dual nondeterministic quantum query algorithm for H7 

In the second example, the following Boolean function is considered: 

1 1 2

2 1 2 3

1 2 1 2 1

2 2 1 2 1

2 1 1 2 1

...............................( , ,..., , ,..., ) 1     

...

...

k

k

N k k k

k k

k k k

x x x

x x x x

Control x x x x x

x x x x

x x x x x

+

+

+ −

− −

− −

= ⊕
 = ⊕ ⊕

= ⇔ 
 = ⊕ ⊕ ⊕


= ⊕ ⊕ ⊕ ⊕

 

Classical deterministic complexity is ( )ND Control N= . 

A dual nondeterministic quantum algorithm is demonstrated in Fig. 17 computing 
ControlN using two queries. 

 
Fig. 17. Dual nondeterministic quantum query algorithm for ControlN 
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In the third example, the following Boolean function is considered: 

1 2 3 4 2 1 2_ ( ) ( ) ( ) ... ( )N k kPAIR EQUALITY X x x x x x x−=¬ ⊕ ∧¬ ⊕ ∧ ∧¬ ⊕ ,  

where N = 2k. 
Classical deterministic complexity is ( _ )ND PAIR EQUALITY N= . 

A dual nondeterministic quantum algorithm is demonstrated in Fig. 18 computing 
PAIR_EQUALITYN using one query. 

 

 

Fig. 18. Dual nondeterministic quantum query algorithm for PAIR_EQUALITYN 

5.1.4. Open Problems 

The future direction of this research study is to prove stronger relations to other types of 
query algorithms, for example, to exact quantum algorithms of the same function, 
classical nondeterministic query algorithms and classical deterministic algorithms. It 
would also be useful to discover efficient quantum nondeterministic algorithms for 
specific functions, revealing large gaps between complexities of different kinds of 
algorithms. 

5.2. Alternative Nondeterministic Query Model 

This section is based on the paper (Vasilieva and Freivalds, 2011). 
In (Floyd, 1967), a point of view is presented that algorithms are nondeterministic 

not in the sense of being random, but in the sense of having a free will. 
We investigate the nature of the above-mentioned nondeterministic free will. We 

propose a way to measure the amount of nondeterminism in an algorithm. In the 
traditional nondeterministic query model the power of nondeterminism comes at no cost. 
The idea is that for the benefit of nondeterminism, the algorithm must “pay” with 
additional queries. We introduce an alternative definition of the nondeterministic query 
model, which incorporates the behavior described above. The definition of 
nondeterministic quantum query algorithms examined in the previous section seems a 
little counter intuitive. This is an additional motivation to introduce a new approach for 
nondeterminism in query algorithms. 
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5.2.1. Definition of the Alternative Nondeterministic Query Model 

The idea of the model can be informally described as follows. Supposedly the task is to 
compute some arbitrary Boolean function F(X) in an alternative nondeterministic query 
model. In such case, the first step is to define a nondeterministic helper function G(X,Y). 
This function has to satisfy definite conditions. The second step is to design a 
deterministic query algorithm for the function G(X,Y). Finally, the nondeterministic 
query complexity of the function F(X) is equal to the complexity of the deterministic 
query algorithm for a nondeterministic helper function G(X,Y). 

Subsequently, we provide formal definitions for the computational model informally 
described above. 

Definition 6. The nondeterministic helper function G(X,Y) for the Boolean function 

F(X) is a partial Boolean function, which satisfies the following conditions: 

∀x1, ..., xn, ∃y1, ..., yk, so that G(x1, ..., xn, y1, ..., yk) = F(x1, ..., xn); 

∀x1, ...,xn, ￢∃y1, ..., yk, so that G(x1, ..., xn, y1, ..., yk) ≠ F(x1, ..., xn). 

Definition 7. The nondeterministic query complexity of the function F(X) with the 

fixed helper function G(X,Y) is denoted by NDG(F) and is equal to the deterministic 

complexity of the G(X,Y): NDG(F) = D(G). 

An additional restriction on the deterministic query algorithm for the helper function 
G(X,Y) is that after computing this function deterministically it should be possible to re-
calculate or verify the value of F(X) independently, using variable values extracted from 
the black box during the calculation of G(X,Y). 

 

Definition 8. The nondeterministic query complexity of the function F(X) is denoted by 

ND(F) and is equal to the minimal nondeterministic query complexity of the function 

F(X) over all possible fixed helper functions G(X,Y):  

ND(F) = min G(X,Y ) NDG(F). 

5.2.2. Computing the Fano Plane Function 

The Fano plane is a two-dimensional finite projective plane with the least number of 
points and lines (Weisstein et.al., 1974). Each vertex of the Fano plane is labeled by a 
variable number xi  (Fig. 19). 

 

Fig. 19. Fano plane with vertices labeled by function FANO(X) variables 
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Definition 9. A line of the Fano plane with Boolean values assigned to vertices is called 

constant if all vertices in a line have the same Boolean value assigned. 

There are two important properties of the Fano plane with Boolean values assigned 
to vertices:  

• For any assignment of variable values there always is a constant line.  
• For any assignment of variable values there cannot be two constant lines 

assigned with the different Boolean value at the same time.  

These two properties allow defining of a Boolean function based on the Fano plane. 

Definition 10. Boolean function FANO(x1, ..., x7) is defined as follows. For an arbitrary 

input X=(x1, ..., x7) find a constant line in the Fano plane. Value of the FANO(X) 

function equals Boolean value assigned to vertices in that constant line. 

An example of FANO(X) function value assignment is illustrated in Fig. 20. 

 

Fig. 20. Illustration of FANO(X) Boolean function value assignment 

The classical deterministic query complexity of the Fano function is equal to number 
of variables: D(FANO)=7. 

For computing the Fano plane function in an alternative nondeterministic query 
model a nondeterministic helper function 1, 7 1 2 3( ..., , , , )FANOG x x y y y

 
with three helper 

variables exists. To compute this helper function deterministically six queries are 
sufficient, thus, NDGFANO(FANO) = 6. 

An important property of the Fano plane function is that definition can be applied 
recursively. 

Definition 11. Recursive Boolean function iFANO  is defined as follows: 
1 1

1 2 7( ) ( , ,..., )FANO X FANO x x x= ; 

1 1 1 1 1 1 1
1 2 7( ) ( ( ), ( ),..., ( )),i i i i i i i i

FANO X FANO FANO X FANO X FANO X
− − − − − −=      

where 1 1 1
1 2 7...i i i i

X X X X
− − −= .  

The classical deterministic query complexity of the recursive Fano function is equal 
to the number of variables: D(FANO

N
) = 7

N. 
A nondeterministic helper function exists ensuring the following nondeterministic 

complexity: ( ) (3 )N N

GND FANO O= . 
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5.2.3. Open Problems 

The future work is to develop and improve the nondeterministic query model introduced 
in this paper. The scope of further investigation is very wide, from designing algorithms 
for certain problems in this model to performing a detailed complexity analysis and 
comparison to other computational models. Consideration of the Boolean function based 
on projective finite geometries, similar to the Fano plane function, seems to be a 
promising direction for searching of interesting examples. The most important further 
step is to define a quantum counterpart of the alternative nondeterministic query model 
and to investigate its properties. 

6. Conclusion 

In this article we presented an overview of results related to investigation of the 
problems of quantum query algorithm design and complexity. Different types of 
quantum query algorithms have been examined, such as exact, bounded-error and 
nondeterministic. 

In the first part, quantum query algorithms for computing Boolean functions have 
been presented. Regarding exact quantum algorithms (for which the probability of a 
correct result is invariably p = 1), there was a long-standing open question and 
challenge: to establish whether a larger separation than N versus 2N can be achieved 
between the classical deterministic and the quantum exact query complexity for a total 
function?1 Even the design of examples with an N versus 2N complexity gap is known to 
be a complex task. The majority of such examples are directly based on the involvement 
of an XOR operation in the definition of a computable function. In the course of the 
present research study, efforts were made to improve and develop universal techniques 
for designing exact quantum query algorithms. To simplify the process of generation and 
verification of quantum algorithms, a Wolfram Mathematica software program was 
developed. Using this tool, two examples of Boolean functions were generated with a 
small number of variables, for which the complexity of the quantum exact query 
algorithm is lower than the complexity of the classical deterministic query algorithm. 
Subsequently, quantum algorithm transformation methods were proposed, providing for 
a significant enlargement of the set of efficiently computable Boolean functions. 
Transformation methods were successfully applied to quantum algorithms for two basic 
Boolean functions. The approach demonstrated may be applied to already familiar and 
new exact quantum query algorithms. Additionally, an exact quantum query algorithm 
for the problem of repetition code verification was presented. In this example, a gap of N 
versus 2N between quantum and classical complexity is achieved.  

Regarding bounded-error quantum query algorithms, an algorithm for computing 
conjunctions, i.e., the Boolean function AND(x1,…,xN), was presented. This is a basic 
and widely applicable function, which requires an efficient algorithm. The quantum 
algorithm presented computes the conjunction of two bits through a single query with 
the correct answer probability 4 / 5p = . The approach was extended by formulating a 

general method for computing the conjunction of two Boolean functions with the same 
probability and the number of queries equal to 1 2max( ( ), ( ))

E E
Q f Q f . 

                                                 
1 Recently an example of a superlinear gap has been presented in (Ambainis, 2012). 
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The second part is devoted to computing multivalued functions in a query model. We 

proposed three types of query algorithms for computing multifunctions: definite, 
randomly distributed and uniformly distributed query algorithms. Since quantum 
algorithms actively employ the power of parallelism and computing in superposition, 
they are naturally well suited for computing multifunctions in a distributed manner. We 
presented three examples of computing multifunctions in classical and quantum versions 
of the query model.  

In the third part, we examined nondeterministic query algorithms. Regarding the 
traditional quantum query model, we introduced a new notion of a dual nondeterministic 
quantum query algorithm.  This type of algorithms was studied, and the discovered 
properties were applied to design efficient algorithms. Investigating the traditional 
nondeterministic query model we realized that it is counter-intuitive in some sense and 
does not employ the full power of nondeterminism. As an alternative, a different 
definition of a nondeterministic query model was introduced. The model was 
demonstrated on the basis of an example of computing the Fano plane Boolean function 
obtaining a 7N versus O(3N) gap between the deterministic and the nondeterministic 
query complexity. 

The goals of the research are achieved on the whole; however, further improvements 
are possible by continuing the study in the following directions: 

• Exact quantum algorithms. It is still important to develop new quantum 
algorithms that are more than two times faster than the best possible classical 
deterministic algorithm. The idea for further work is to apply the combinatorial 
approach for algorithm design and to enlarge the size of the quantum system. 

• Computing multifunctions in the query model. In our opinion, this study 
direction is the most promising. To be able to build even more efficient 
algorithms, it is necessary to perform an exhaustive analysis of the properties of 
functions and algorithms discovered during the research study. A very 
important action line is development of convenient and efficient methods for 
proving the classical complexity lower bounds for multifunctions. 

• Nondeterministic query algorithms. The most important further step is to define 
a quantum counterpart of the alternative nondeterministic query model and to 
investigate its properties. 
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