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Abstract. Multidimensional data are often difficult to understand for a human because of their
high dimensionality. Multidimensional data visualization is one of the ways for data perception
where multidimensional data must be transformed in a low-dimensional space and presented
visually for human decision. As a result of transformation there appear new data features, the
number of which is lower than that of the original data features. In this paper, we present and
investigate the way of reduction of dimensionality using the exponential correlation function,
taking into account that there are clusters in the analysed set of multidimensional data.

Keywords: exponential correlation function, clustering, multidimensional scaling, visualization

1 Introduction

Multidimensional data usually describe objects (people, equipment, plant, nature, etc.),
which are characterized by numerical features x1, x2, . . . , xn. The number m of the
objects, that comprise a specific set of analysed objects, is finite. A certain collection of
feature values describes one particular object Xi = (xi1, xi2, . . . , xin), i = 1,m, of the
analysed set, here n is the number of features. The object Xi can be interpreted as point,
and the values xi1, xi2, . . . , xin of features x1, x2, . . . , xn, in this case, are components
of the point Xi. The analysed multidimensional data set can be described as a matrix
X = {X1, X2, . . . , Xm} = {xij , i = 1,m, j = 1, n}, the ith row of which is the point
Xi ∈ Rn of the n-dimensional Euclidean space (Dzemyda et al., 2013).

High dimensional data are difficult to understand for a human due to their volu-
minous n: to determine the structure, interrelations and groups of objects, etc. For
that reason, there are many methods proposed for multidimensional data visualization.
The visualization concept is rather wide, but we explore the methods of multidimen-
sional data visualization that help to determine or estimate the structure of a set of
multidimensional data objects (similarities between object groups, objects-outliers, and
so on). There are two main groups of methods for visualizing multidimensional data:
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direct visualization methods and projection methods, also called as dimension reduc-
tion techniques. Projection methods transform (project) the multidimensional data set
X = {X1, X2, . . . , Xm} from the space Rn to a low-dimensional space Rd, (d < n),
where the obtain projection Y = {Y1, Y2, . . . , Ym} = {yij , i = 1,m, j = 1, d} of the
data set X can be observed visually as d = 1, 2 or 3. The principal component analy-
sis is a well-known linear projection method, whereas the multidimensional scaling is
often used for nonlinear projection of multidimensional data (Dzemyda et al., 2013).

The aim of this paper is to create a method to reduce the number of features of
multidimensional data using the exponential correlation function, taking into account
that there are clusters of similar objects in multidimensional data.

The method contains: 1) clustering of multidimensional data points into a certain
number of clusters k, 2) transformation of n-dimensional data into a k-dimensional
space Rk, and 3) visualization of the obtained k-dimensional data, using the projection
method. Any method of projection (linear or nonlinear) can be used. The method has
been investigated experimentally.

2 Visualization using multidimensional scaling

Multidimensional scaling (MDS) refers to a group of methods that are widely used for
dimensionality reduction and visualization of multidimensional data (Borg and Groe-
nen, 2005). The MDS method produces the projection Yi = (yi1, yi2, . . . , yid) of the
point Xi = (xi1, xi2, . . . , xin) to a low-dimensional space Rd, (d < n) (usually R2 or
R3). After projecting to a low-dimensional space, similar objects (points) are arranged
closer to one another while different objects (points) are located away from one another
(Dzemyda et al., 2013).

Let us denote the pairwise proximity of the points Xi and Xj by d(Xi, Xj), and
the distance between the corresponding points Yi and Yj in a low-dimensional space by
d(Yi, Yj), i, j = 1,m. The aim of the MDS is to find the distances d(Yi, Yj) as close as
possible to d(Xi, Xj). To this end, some least-squares objective function is minimized.
The simple least-squares objective function, used in a literature, is called a raw Stress
function and can be written as:

ErawStress =
∑
i<j

wij(d(Yi, Yj)− d(Xi, Xj))
2, (1)

where wij are non-negative weights (Borg and Groenen, 2005). The simplest case is as
wij = 1.

The application of MDS, as the least-squares objective function is raw Stress and
wij = 1, is presented in Fig. 1. Four sets of multidimensional data, presented in the
section Data of experiments, are visualized to the R2 space, i.e. d = 2. We do not
present labels and units for both axes in the figure because we are interested in observing
the interlocation of points on a plane only. In Fig. 1 we see that there is one clearly
separate cluster in Iris data, and there is no clear bound between the other two clusters.
It is known that there are 5 clusters in Randomly generated data, but we can see only
four clearly. There are no clear dividing boundaries between the clusters in the last two
multidimensional data sets.
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Iris data Randomly generated data

Vertebral Column data Breast Cancer data

Fig. 1. Visualization of a multidimensional data sets by MDS as the least-squares objective func-
tion is raw Stress.

However the least-squares objective function presented in formula (1) is not the
only one possible. There are more variants of this function. One of the examples is the
Stress-1 function (Borg and Groenen, 2005), (Kruskal, 1964):

EStress−1 =

√∑
i<j(d(Yi, Yj)− d(Xi, Xj))2∑

i<j(d(Yi, Yj))2
, (2)

The action of MDS, when the least-squares objective function is Stress-1, is pre-
sented in Fig. 2. If we compare the data of Fig. 1 with Fig. 2, we will note that visu-
alization of Iris, Vertebral and Breast Cancer multidimensional data is unchanged, but
there are 5 clear clusters in Randomly generated data.

MDS can be used directly for data visualization. However, there is an idea – maybe
it is better first of all to perform a nonlinear transformation of multidimensional data
by highlighting the clusters in the data, and afterwards to visualize the clustered data in
order to see groups of objects better.

We give a short introduction of the clustering idea below.
One of the aims of visual data analysis is to find or even to see the clusters of data.

In general, if we want to find clusters in the data and define their centers, we must use
special methods meant for clustering. Clustering is the distribution of the analysed ob-
jects into different groups, also known as clusters, so that the objects in a group were
similar to one another, and the objects in different groups were dissimilar (Dzemyda
et al., 2013). The data set X = {X1, X2, . . . , Xm} may be divided into non inter-
secting clusters K1,K2, . . . ,Kk using any clustering method (k-means, classification
tree, k nearest neighbour or others (Han et al., 2011), (MacQueen, 1965), (Vesanto,
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Iris data Randomly generated data

Vertebral Column data Breast Cancer data

Fig. 2. Visualization of a multidimensional data sets by MDS as the least-squares objective func-
tion is Stress-1.

2001), (Dunham, 2003), (Cover and Hart, 1967)). In this paper, clustering is an inside
procedure of the proposed method. We use here the k-means clustering method, which
can find clusters K1,K2, . . . ,Kk and the centers of clusters µj = (µj1, µj2, . . . , µjn),
µj ∈ Rn, j = 1, k in the data set. With a view to achieve the objectivity of results, clus-
tering has been carried out for several times in our experiments, because the function
of clustering error is multiextremal and only the local, but not global minimum of the
function is often found. The error of the k-means method is as follows:

Ek =

k∑
j=1

∑
Xi∈Kj

∥ Xi − µj ∥2, (3)

where Kj is the jth cluster, j = 1, k, µj = (µj1, µj2, . . . , µjn) is the centre of the
cluster Kj , µj ∈ Rn,

∑k
j=1 sj = m.

For illustration, the results of visualization of data consisting of matrix X and cluster
centers (µj1, µj2, . . . , µjn), µj ∈ Rn, j = 1, k using the MDS method, are presented
in Figures 3 and 4. When comparing Fig. 1 with Fig. 3 and Fig. 2 with Fig. 4, we see
that the location of points actually has not been changed, and the centers of the clusters
µj , j = 1, k (marked by ) are in the middle of clusters.
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Iris data Randomly generated data

Vertebral Column data Breast Cancer data

Fig. 3. Visualization of clustered multidimensional data by MDS using the raw Stress function.

Iris data Randomly generated data

Vertebral Column data Breast Cancer data

Fig. 4. Visualization of clustered multidimensional data by MDS using the Stress-1 function.
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3 Application of the exponential correlation function to reduce the
dimensionality of multidimensional data

The previous section presented the dimensionality reduction of multidimensional data
into a low-dimensional space using the MDS method.

In this section, we present a method that includes:

• clustering of multidimensional data into a certain number k of clusters,
• transformation of n-dimensional data into the k-dimensional space Rk,
• visualization of k-dimensional data using nonlinear projection method (the MDS is

used in this paper).

The advantage of the method is highlighting of the existing clusters in multidimen-
sional data during visualization.

Let us discuss the proposed method in detail.
After clustering the data into a certain number of clusters k, we reduce the number

of features n of multidimensional data Xi = (xi1, xi2, . . . , xin), i = 1,m, where Xi ∈
Rn, by transforming Xi ∈ Rn to Zi ∈ Rk : Zi = (zi1, zi2, . . . , zik); here k < n. The
dimensionality of X = (x1, x2, . . . , xn) is reduced using some exponential correlation
functions. We get a new data set Z = {Z1, Z2, . . . , Zm} = {zij , i = 1,m, j = 1, k},
k < n, from the data set X using formulas:

A. Exponential correlation function (Yaglom, 1986):

zj(X) = exp(−γ ∥ X − µj ∥), j = 1, k, γ =
1

2σ2
, (4)

B. Gaussian correlation function (Yaglom, 1986):

zj(X) = exp(−γ ∥ X − µj ∥2), j = 1, k, γ =
1

2σ2
, (5)

here µj is the center of the jth correlation function, µj ∈ Rn, ∥ X−µj ∥ is the distance
between the points X and µj , σ is the width parameter, which determines the function
smoothness. Let us note that ∥ X−µj ∥≥ 0 and γ > 0. The function (5) is also called
Gaussian radial basis function and is often applied in neural networks (Buhmann, 2003).
The only difference between the exponential and Gaussian correlation functions is that
in the Gaussian function the distance is squared.

After reducing the features from the number n to k, the obtained data set Z is
visualized to the space R2. Obviously, if the number of clusters k > 2, then we need
to use projection methods to visualize the multidimensional data set Z to the space
R2. The MDS method is used in further experiments. In order to reveal the features of
transformations (4) and (5) deeper, we visualized not only the data set Z, but also the k-
dimensional centers µj , j = 1, k. Let us denote the obtained transformations of centers
by µz

j = (µz
j1, µ

z
j2, . . . , µ

z
jk) ∈ Rk. So, as in the previous section and in Figures 3 and

4, the total number of visualised points is m + k. The results are presented in Fig. 5.
Two different functions of MDS have been used – raw Stress and Stress-1. The use of
these two functions in the case of Randomly Generated data has given different results
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Fig. 5. Dimensionality reduction of multidimensional data sets using exponential and Gaussian
correlation functions.

of visualization, but they did not affect the results of visualization of Iris data, Vertebral
Column data and Breast Cancer data. The points corresponding to the points of different
clusters are marked as , , , , . The cluster centers are marked by .

Fig. 5 shows that we get different visualization results when we use different func-
tions for transformation (4) or (5). There are two differences in visualization results
when exponential and Gaussian correlation functions are applied: 1) Visualizing na-
ture: visualization results are more angular in the case of exponential function, and they
are more sleek in case of Gaussian function. 2) Location of the clusters center: in the
case of Gaussian function, the centers are in the middle of the clusters, but in the case of
exponential function the centers are shifted to the side from the points of the respective
cluster and they acquires an exclusive property to be points where changing charac-
teristic of cluster objects. This is due to that the exponential correlation function was
analysed more in detail in this paper.

Fig. 5 shows that the points, visualized after dimensionality reduction using the
exponential correlation function are located in two ways:

a) Isolated cluster (see visualization of Iris data and Randomly generated data). Points
of the cluster make up a separate group. For example, a separate cluster in Iris data
is marked by . The points of this cluster focus in a clearly visible separate cluster.
Isolated clusters in Randomly Generated data are also very clearly evident.

b) Close to each other clusters (see visualization of Iris data, Vertebral Column data and
Breast Cancer data). Visualised points of a separate cluster scatter in the environment
of two lines, which join together near the cluster center. The Breast Cancer data
reflect best the arrangement of the objects in the environment of two lines (Fig. 5).
This also is observed in the visualization of the Iris data and Vertebral Column data.
The points that have similarities to that of the neighbouring cluster are visualized
near the line that connects the centers of these neighbouring clusters.

When transforming multidimensional data from Xi ∈ Rn into Zi ∈ Rk, i = 1,m,
using the exponential correlation function, it is important to choose the proper param-
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eters of the function: centers µj and the width parameter σ. Just like most of the au-
thors (Pierrefeu et al., 2006), (Chang et al., 2005), (Benoudjit and Verleysen, 2003),
we choose the centers, by clustering data using the k-means method (Han et al., 2011),
(Vesanto, 2001), (MacQueen, 1965). The dependence of visualization results on σ is
shown on Iris data as the number of clusters k = 3. The visualization dimensionality
d is chosen equal to 3 and 2. Therefore, as d = 3, Zi, i = 1,m, may be visualized
directly, because k = 3. As d = 2, MDS was used to transform Zi, i = 1,m, from R3

to R2. The results with different width parameter σ values (a) σ = 0.3; b) σ = 3; c)
σ = 30; d) σ = 100) are presented in Fig. 6.
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Fig. 6. Visualization results of Iris data with various σ using raw Stress and Stress-1

Looking over all the visualization results in Fig. 6 we can state that, if the width pa-
rameter of the correlation function is chosen too small (Fig. 6 (a1, a2, a3)), then all the
points of the clusters are pushed to a totality and the centers of the clusters are outside
of the clusters. If the width parameter of the exponential correlation function is selected
properly (Fig. 6 (b1, b2, b3, c1, c2, d1, d2)), then the clusters are well distinguished.
However, by visualizing the results into a two-dimensional space using MDS, as the
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least-squares objective function is Stress-1, we notice that the width parameter can be
choose too large (Fig. 6 (d3)), then the visualised data clusters overlap each other. We
can conclude from Fig. 6 that, as d = 3 and d = 2 and MDS uses the raw Stress func-
tion, the width parameter σ does not have a significant influence on the relative location
of visualised points, because the obtained Fig. 6 (b1, b2, c1, c2, d1, d2)) with different σ
values visually look very similar. Only the scale of figures is different. However, when
the Stress-1 is used (Fig. 6 (b3, c3, d3)), the width parameter σ from a certain range can
become too large and it is very important to choose it properly.

On the other hand, it is interesting to observe the evolution of spread of the points
on the two-dimensional plane with an increase of σ, when the Stress-1 is used. In this
case, σ = 0.3; 3; 30. At first (σ = 0.3), the points concentrate in one large group, the
cluster centers are on the sides and we see that they attract the points of their clusters.
In this case, the belonging of the points to the clusters is determined by the location of
the points between the cluster center and the center of the observed groups. The cluster
which has the least similarity to the other clusters (points of this cluster are marked as

) separates from them when the width parameter σ increases. The other two clusters
try to “pick out” the points typical of them only. Although in Fig. 6 (b3) we observe
a continuous transition from one cluster to another, each of these clusters has separate
points, which are located in another direction than towards the neighboring cluster. By
increasing the width parameter σ up to 30 (Fig. 6 (c3)), we note that the attraction of
the center of the middle cluster (its points are marked as ) becomes stronger and the
points of the other two clusters start to move towards it. Here we see an increase in
scattering of the points of the first cluster (its points are marked as ). The points of
the third cluster (its points are marked as ) lose the contact with the center of their
cluster and are shifted to the center of the second cluster (its points are marked as ).
The points of the cluster, marked by , move to the center of their cluster.

All conclusion above are suitable and for Breast Cancer data. The width parameter
σ values are different only a) σ = 10; b) σ = 100; c) σ = 1000; d) σ = 10000. The
visualization results of Breast Cancer data with different width parameter σ values are
presented in Fig. 7.

In further experiments, we use Stress-1 exclusively in MDS, because it is the only
way when we can control the visualization results using various values of σ (see Fig. 6
and Fig. 7).

Fig. 6 and Fig. 7 illustrates that it is very important to choose the proper width
parameter σ, but there is no single way to do that. However, we can acquire some ex-
perience from the radial basis function neural networks how to choose the proper width
parameter σ. Neural networks of this type are widely applied in image recognition,
classification, prediction, and solution of other problems.

The simplest approach is to take fixed radial-basis functions that define activation
functions of the hidden units. The location of centers may be chosen randomly from
the data set. This is considered to be a sensible approach, provided that the training
data are distributed in a representative manner for the problem at hand (Lowe, 1989).
However, it seems intuitively better, if the centers are chosen with regard to the clusters
in multidimensional data. For the radial-basis functions, S. Haykin suggests to employ
an isotropic Gaussian function whose standard deviation (i.e. width parameter σ) is
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Fig. 7. Visualization results of Breast Cancer data with various σ using raw Stress and Stress-1

fixed according to the spread of the centers (Haykin, 2008). Specifically, a (normalized)
radial-basis function centered at µj is defined as:

zj(X) = exp

(
−∥ X − µj ∥2

2σ2
A

)
= exp

(
− k

d2max

∥ X − µj ∥2
)
, j = 1, k, (6)

where k is the number of clusters and dmax is the maximum distance between the
chosen centers of all the clusters k. In effect, the width of all the Gaussian radial-basis
functions is fixed as follows:

σA =
dmax√
2k

= αdmax, where α =
1√
2k

. (7)

This formula ensures that the individual radial-basis functions are not too peaked
or too flat; both of these two extreme conditions should be avoided. As an alternative
to formula (7) S. Haykin offers an idea to use individually scaled centers with broader
widths in the areas of a lower data density, which requires experimentation with the
training data (Haykin, 2008). But it is not specified how to do that.
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This is leads us to use the exponential correlation function:

zj(X) = exp

(
−∥ X − µj ∥

2σ2
A

)
= exp

(
− k

d2max

∥ X − µj ∥
)
, j = 1, k. (8)

Iris and Breast Cancer data, transformed into a low-dimensional space, where σ is
calculated by formula (7) are presented in Fig. 8. On the basis of the results in Fig. 6
and Fig. 7, we can draw a conclusion, that the width parameter σA for the Iris data is
proper, but the width parameter σA is too large for the Breast Cancer data, because we
observe the movement of points of the first cluster (its points are marked by ) and
the second cluster (its points are marked by ) towards the center of the third cluster
(its points are marked by ). So the width parameter σA obtained by formula (7) is
suitable not for all data.

σ
A
 = 2.0484, α =0.40825

Iris data

σ
A
 = 918.5752, α =0.40825

Breast Cancer data

Fig. 8. Transformation results obtained calculating σ by formula (7).

For automatic selection of the width parameter, S. Haykin (2008) uses the maxi-
mum distance between the centers of clusters k. An alternative is the average distance
between them. L. Pierrefeu et al. (2006) tests show that the width parameter σ calcu-
lated by the average distance between the centers of clusters gives some good results
and seems to be well adapted. In fact, the average distance is not the optimal parameter
for the width parameter. The best result is achieved with the width parameter approx-
imately 20% smaller than the average distance. The method of choosing σ is quite
simple:

1. Calculate the average distance between the centers of clusters:

davg =

∑k
i=1

∑k
j=1,j ̸=i ∥ µi − µj ∥
k(k − 1)

, (9)

where ∥ µi − µj ∥ is the Euclidean distance between the centers µi and µj of
clusters Ki and Kj , k is the number of clusters.

2. For the function

zj(X) = exp

(
−∥ X − µj ∥

2σ2
B

)
, (10)
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the width parameter is calculated as follows:

σB = αdavg, where α =
1

β
. (11)

The authors (Pierrefeu et al., 2006) propose to seek for the best value of σB by
changing the value of β from 3.6 to 0.05 (α ∈ [0.28, 20]) with a decrement of 0.05.

The results of dimensionality reduction, when σB is calculated by formula (11)
using different α values (α changes from 0.28 to 20 with an increment of 3.944), are
presented in Fig. 9 and Fig. 10. Based on Fig. 6 (a3, b3, c3, d3), we can state that the
width parameter σB for the Iris data is a little bit too small (Fig. 9 (a)), because some
movement of cluster points to cluster centers is noticed. The results of Fig. 9 (e, f) are
very similar to that of Fig. 6 (d3), so we can state that the width parameter σB is too
large because the visualized data clusters overlap each other, as α > 16. The width
parameter σB is also too large in Fig. 9 (c, d) because we observe the movement of the
cluster points, marked by and , to the center of the cluster marked by . If we
reject the results when the width parameter σB is too small or too large for the Iris data,
we can notice that the width parameter σB of the exponential correlation function is
reasonable as α = 4.224.

σ
B
 = 0.94932, α =0.28

a

σ
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 = 14.3211, α =4.224

b
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d
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B
 = 54.4366, α =16.056

e
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 = 67.8084, α =20

f

Fig. 9. The results of dimensionality reduction of Iris data using different α values.

Lets us compare the Breast Cancer data with the results of Fig. 7 (a3, b3, c3, d3).
In the visualization results in Fig. 10 (b – f) we evidently see, that the visualised data
clusters overlap each other. The experiments show that the best result has been got in
Fig. 10 (a). The clusters are clearly distinguished in the data and the points of separate
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clusters scatter in the environment of two lines. However, we observe that the visualised
points of the cluster marked by lose the contact with projections of the center of their
cluster.

σ
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c

σ
B
 = 18171.8117, α =12.112

d

σ
B
 = 24089.053, α =16.056
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 = 30006.2942, α =20

f

Fig. 10. The results of dimensionality reduction of Breast Cancer data using different α values.

There is rather a wide interval [0.28, 20] to select α in formula (11), but it takes a
lot of time to find a proper α from this interval if α runs with a small step. An example
in Fig. 10 shows that the interval, proposed in (Pierrefeu et al., 2006), is not suitable for
the Breast Cancer data; it should be expanded. Thus, to find a proper α so that the width
parameter σB were reasonable for transformation (10), we use the maximum distance
τ from k minimal distances between the projections µy

j = (µy
j1, µ

y
j2), j = 1, k of the

centers µz
j = (µz

j1, µ
z
j2, . . . , µ

z
jk), j = 1, k of clusters Kj , j = 1, k and the projections

Yi = (yi1, yi2), i = 1,m of the points Zi = (zi1, zi2, . . . , zik), i = 1,m.

τ = maxj=1,k{minXi∈Kj ∥ Yi − µy
j ∥}. (12)

The dependence of τ on α is presented in Fig. 11 for Iris dataset. At first with the
increase of α, the value of τ decreases while α reaches some value αb. Then the value
of τ increases up to α reaches αc, and afterwards it decreases again. For the sake of
visualization, in Fig. 11, we present the results of visualization at the exceptional values
of α (α = αa = 0.28, α = αb = 2.28, α = αc = 7.88). Although the dependence of
τ on α shows that there are smaller values of τ when the value of α is larger, but it is
reasonable to fix the first found local minimum of τ , because α > αc is too large, as we
see in Fig. 9 and Fig. 11.
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Fig. 11. Iris data: dependence of τ on α
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As mentioned above, the interval α ∈ [0.28, 20] is not suitable for the Breast Cancer
data, therefore we were looking for the parameter α in the interval [0.02, 2]. Dependence
of τ on α and the results of visualization at the exceptional values of α (α = αa =
0.02, α = αb = 0.1, α = αc = 0.74) are presented in Fig. 12.

The search for the minimal τ needs abundant calculations. To save the time for
calculation, we tried to take the fixed α from formula (7), where α depends on the
number of clusters, and the width parameter is calculated by formula (11):

α =
1√
2k

, σC = αdavg =
davg√
2k

, (13)

where davg is the average distance between the centers µj , j = 1, k of clusters, k is the
number of the clusters, α ∈ (0, 0.5], as k ≥ 2.

The results, when σC is calculated by formula (13), are presented in Fig. 13. Com-
paring the transformation results of the Iris data in Figures 8, 9 and 13, we see that the
width parameter σC is a bit too small, because attraction of the points to the projection
centers µz

j of clusters is still going on.
σC for the Breast Cancer data is a little too large, because we observe some move-

ment of the points of the first cluster marked by and the second cluster marked by
towards the center of the third cluster (its points are marked by ). We see that the

results obtained by formula (13) are not the best ones, but, in this case, the view is better
than in Fig. 8.

σ
C
 = 1.3841, α =0.40825

Iris data

σ
C
 = 612.5009, α =0.40825

Breast Cancer data

Fig. 13. Transformation results obtained calculating σ by formula (13).

4 Visual analysis of medical data

The dimensionality reduction of multidimensional data using the exponential corre-
lation function, includes 1) clustering the multidimensional data points into a certain
number of clusters k, 2) transformation of n-dimensional data into a k-dimensional
space Rk, and 3) visualization of the obtained k-dimensional data, using the multidi-
mensional scaling method. In this section, we present an experimental investigation of
the method using the multidimensional medical data.
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The method, discussed previously, was applied to the data grouped into the known
number of clusters. However, the optimal number of clusters is usually unknown. There-
fore the medical data (see the data sets 3 – 6 in the section Data of experiments)
were divided into a different number of clusters. The direct visualization of multidi-
mensional data, using the MDS method (matrix X and centers of the clusters µj =
(µj1, µj2, . . . , µjn), µj ∈ Rn, j = 1, k), is presented in the left column of Figures
14 – 17. The total number of the visualized points is m + k. Visualization of mul-
tidimensional data after transformation (matrix Z and centers of the clusters µz

j =

(µz
j1, µ

z
j2, . . . , µ

z
jk), µ

z
j ∈ Rk, j = 1, k), where the width parameter σ of the expo-

nential correlation function was calculated by formula (11), is presented in the right
column. The parameter α was calculated by formula (12). The total number of visual-
ized points is m+k as well. The points that correspond to different clusters are denoted
by , , , . The projection of centers of the clusters are denoted by .

Let us comment Figures 14 – 17. We see that after visualizing directly the multi-
dimensional data set by the MDS method (Fig. 14 (a1, b1, c1); Fig. 15 (a1, b1, c1);
Fig. 16 (a1, b1, c1); Fig. 17 (a1, b1, c1)), the location of the points in fact does not
change, although the number of clusters changes. However, after the dimensionality
reduction of multidimensional data using the exponential correlation function, the loca-
tion of the points on the plane changes depending on the number of clusters (Fig. 14 (a2,
b2, c2); Fig. 15 (a2, b2, c2); Fig. 16 (a2, b2, c2); Fig. 17 (a2, b2, c2)). Two-dimensional
projections of the centers µz

j of clusters are shifted to the side from the points of the
corresponding cluster, and the points of a separate cluster are sorted according to the
similarity to the points of neighbouring clusters and to the inherent character typical
only of a specific cluster.

The visualization results obtained using transformation (4) allow us to guess about
the optimal number of clusters. For example, the Heart Diseases data (Fig. 16 (c2))
show that it is inappropriate to partition data into four clusters, because the points of the
cluster marked by and the points of the cluster marked by are similar to one an-
other and do not distinguish the points typical of only of one cluster. The points of both
clusters are visualised in one group, thus creating a single cluster. However, clustering
into a higher number of clusters than optimal, some times may have advantages, be-
cause that allows us to look deeper into the data. For example, the Breast Cancer data.
If we compare clustering into two (Fig. 15 (a1)) and four (Fig. 15 (c1)) clusters, we
notice that four clusters are obtained by dividing the first two clusters (benign tumour
and malignant tumour) into two parts (two clusters of benign tumoor and two clusters
of malignant tumour). After transforming multidimensional data to the k-dimensional
space, the points in the clusters are sorted in some way by similarity to the points of a
neighbouring cluster. It enables us to interpret the data more accurately. It is very sim-
ilar in the case of Vertebral Column data (Fig. 14). However, in the case of Parkinson
Desease data (Fig. 17), when increasing the number of clusters only one cluster is di-
vided (data about healthy people) into smaller clusters, ant the other cluster (data about
sick people) (in Fig. 17 (a1) the points of the cluster are marked by ; in Fig. 17 (b1)
by ; in Fig. 17 (c1) by ) remains almost unchanged.
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Fig. 14. Transformation results of Vertebral
column with different number of clusters.

2 
cl

us
te

rs

a1

σ
B
 = 2652.0715, α =2

a2

3 
cl

us
te

rs

b1

σ
B
 = 150.0315, α =0.1

b2

4 
cl

us
te

rs

c1

σ
B
 = 101.9292, α =0.07

c2

Fig. 15. Transformation results of Breast
Cancer with different number of clusters.
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Fig. 16. Transformation results of Heart dis-
eases with different number of clusters.
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If we compare a direct application of the MDS to the n-dimensional data with the
results obtained after the transformation into a k-dimensional space and afterwards vi-
sualization by MDS, we can conclude that the proposed and investigated method allows
us to predict better and evaluate the inherent character of the points of a particular clus-
ter and similarities to other clusters.

5 Conclusions

Multidimensional data are often difficult to understand for a human because of their
high dimensionality. Multidimensional data visualization is one of the methods for data
perception where multidimensional data must be transformed into a low-dimensional
space. As a result of transformation there appear new data features, the number of which
is lower than that of the original data features. In this paper, we present and investigate
the way of multidimensionality reduction using the exponential correlation function,
taking into account that there are similar clusters in the analysed set of multidimensional
data.

The method, proposed in this paper is based on the application of the exponential
correlation function to dimensionality reduction of multidimensional data. The method
includes:

• clustering of multidimensional data into a certain number k of clusters,
• transformation of n-dimensional data into the k-dimensional space Rk using the

exponential correlation function,
• visualization of k-dimensional data using nonlinear projection method (the MDS

was used in this paper).

The experimental investigation of the proposed method leads us to the following
conclusions:

• The visualisation quality depends on:
◦ the chosen number of clusters;
◦ the chosen value of the width parameter σ;
◦ the chosen least-squares objective functions in the multidimensional scaling

method.
• Various ways of choice of the width parameter σ are discussed. The best parameter
σ was defined applying formulas (11) and (12), but that requires the most comput-
ing time;

• The visualised points are located in two ways: isolated cluster (points of the cluster
make up a separate group) and close to each other clusters (visualised points of a
separate cluster scatter in the environment of two lines, which join together near
the cluster center).

In fact, the method, proposed in this paper, is some extension of the nonlinear pro-
jection of multidimensional data, where data clustering and transformation of the clus-
tered data to the lower dimensionality precedes the nonlinear projection. Such inclusion
of clustering allows us to comprehend multidimensional data from a new standpoint.
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6 Data of experiments

Six multidimensional data sets were used in the experiments. First five multidimen-
sional data sets were taken from ‘UCI Repository of Machine Learning Databases’
(http://archive.ics.uci.edu/ml/).

1) Iris Plants Database. The data set consists of three kinds of flower iris – Setosa,
Versicolour and Virginica (k = 3). There are 50 samples in each of the three classes,
in total 150 (m = 150). Four features describe each flower of Iris – sepal length,
sepal width, petal length and petal width (n = 4).

2) Vertebral Column Database. The data set containing values of six biomechanical
features used to classify orthopaedic patients into 3 clusters (k = 3) – normal, disk
hernia, or spondilolysthesis – or into 2 clusters (k = 2) – normal, abnormal. 310
patients comprise the whole data set (m = 310). Each patient is characterized by six
biomechanical attributes: pelvic incidence, pelvic tilt, lumbar lordosis angle, sacral
slope, pelvic radius, and the grade of spondylolisthesis (n = 6).

3) Breast Cancer Database. The data set is grouped into 2 clusters (k = 2): malig-
nant and benign. 569 tumours comprise the whole data set (m = 569). Each tumour
is described by 30 features: radius (mean of distances from the center to points
on the perimeter), texture (standard deviation of gray-scale values), perimeter, area,
smoothness (local variation in radius lengths), compactness (perimeter2 / area – 1.0),
concavity (severity of concave portions of the contour), concave points (number of
concave portions of the contour), symmetry, fractal dimension (“coastline approxi-
mation” – 1) (n = 30).

4) Heart Diseases Database. The data set is divided into 2 clusters (k = 2) – the
absence or presence of heart disease. 270 patients comprise the whole data set (m =
270). Each patient is characterized by 13 attributes: age, sex, chest pain type (4
values), resting blood pressure, serum cholesterol in mg/dl, fasting blood sugar >
120mg/dl, resting electrocardiographic results (values 0,1,2), maximum heart rate
achieved, exercise induced angina, oldpeak = ST depression induced by exercise
relative to rest, the slope of the peak exercise ST segment, number of major vessels
(0-3) colored by flouroscopy, thal (normal, fixed defect, reversable defect) (n = 13).

5) Parkinson‘s Diseases Database. The data set is classified into 2 clusters ( k = 2 ) –
absence or presence of Parkinson‘s disease. 195 patients comprise the whole data
set (m = 195). 22 attributes characterize each patient that are typical of Parkinson‘s
desease (n = 22).

6) Randomly Generated Database. Data are generated so that they make up 5 clusters
(k = 5) of 100 points in each cluster, the whole data set consists of 500 points
(m = 500) of R10 (n = 10). If the point belongs to a cluster, the numbered feature
value is generated in the interval [3, 5], the values of other features are generated in
the interval [−1, 1], i.e. xij ∈ [−1, 1], and only if Xi ∈ Kj , then xij ∈ [3, 5].
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