FOURIER TRANSFORM SPECTROSCOPY OF THE $a^{3}\Sigma^{+}$ AND $X^{1}\Sigma^{+}$ STATES IN RbCs

M. Tamanis¹, O. Docenko¹, R. Ferber¹, H. Knöckel², E. Tiemann²

¹ Laser Centre, University of Latvia, 19 Rainis Boulevard, Riga, LV-1586, LATVIA ² Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, Hannover, 30167, GERMANY

RbCs is studied in the ultracold regime [1] already since 2005. In order to elaborate optimal schemes for production of ultracold molecules as well as to transfer them into their lowest rovibrational level of the ground state $X^1\Sigma^+$ accurate knowledge of potential energy curves (PEC) of the $a^3\Sigma^+ / X^1\Sigma^+$ states close to the asymptotes of Rb (5S) and Cs (6S) atomic pair is crucial.

At present the highest observed vibrational level of $X^1\Sigma^+ v_X = 119$ [2] is rather far (about 30 cm⁻¹) from the dissociation limit, and the $a^3\Sigma^+$ state is not observed at all by conventional spectroscopy. Hence present PECs do not allow calculating scattering lengths and Feshbach resonances with acceptable accuracy.

We report on first high-resolution observations of the RbCs $a^{3}\Sigma^{+}$ state as well as ground state vibrational levels higher than v_{X} = 119 in laser induced fluorescence (LIF) recorded through a Fourier transform spectrometer (FTS).

RbCs molecules were produced in a heat-pipe at a temperature of about 280° C. Transitions to $a^{3}\Sigma^{+}$ were recorded when radiation from a tunable diode laser with central frequency around 705 nm was used for excitation of the $B^{1}\Pi \leftarrow X^{1}\Sigma^{+}$ transitions. The frequency range used in the present experiment was between 14063 cm⁻¹ and 14149 cm¹. It is well known that the $B^{1}\Pi$ state is strongly perturbed by the nearby triplet state $c^{3}\Sigma^{+}$ thus opening the window to the triplet manifold. Subsequent LIF transitions ($B^{1}\Pi \sim c^{3}\Sigma^{+}$) $\rightarrow X^{1}\Sigma^{+}$ and ($B^{1}\Pi \sim c^{3}\Sigma^{+}$) $\rightarrow a^{3}\Sigma^{+}$ were recorded with FTS Bruker IFS 125 HR at a resolution 0.03 cm⁻¹. At present the obtained data field for $a^{3}\Sigma^{+}$ state covers v_{a} from 6 to 31 with rotational levels J_{a} from 24 to 155.

The very high vibrational levels of the ground $X^{1}\Sigma^{+}$ state were observed when the $(4)^{1}\Sigma^{+}$ state was excited at frequencies within the range 17542-17609 cm⁻¹ applying a single mode dye laser (Coherent 599–21) with Rhodamine 6G dye. At present we have observed $(4)^{1}\Sigma^{+} \rightarrow X^{1}\Sigma^{+}$ transitions up to $v_{X} = 127$ for rotational levels about 20. For several J_{X} resonant $X^{1}\Sigma^{+} \sim a^{3}\Sigma^{+}$ mixing due to hyperfine interaction is clearly pronounced in the spectra, especially for $v_{X}=122$.

First evaluations of the obtained data were already performed for full modeling of singlet \sim triplet coupling through coupled channels calculations yielding potential energy curves for which we believe that they will be accurate enough for a reliable prediction of cold collision parameters for Rb and Cs atomic pairs. Work is in progress.

References

[1] J. M. Sage, S. Sainis, T. Bergeman, D. DeMille, Phys. Rev. Lett. 94, 203001 (2005).
[2] C.E. Fellows, R.F. Gutterres, A. P. C. Campos, J. Verges, and C. Amiot, J. Mol. Spectr. 197, 19 (1999).