INVOLVING FUZZY ORDER IN THE DEFINITION OF MONOTONICITY FOR THE AGGREGATION PROCESS

O. GRIGORENKO

University of Latvia
Raina bulvāris 19, Rīga LV-1586, Latvia
E-mail: ol.grigorenko@gmail.com

Since the introduction of the concept of a fuzzy set by L. A. Zadeh [4] and its generalization by J. A. Goguen [2], fuzzy analogues of basic concepts of classical mathematics were introduced and investigated, fuzzy relations [5] among them. In the last years theoretical results obtained in the theory of fuzzy relations were involved for solving problems of practical nature (see eg.[1]). The aim of this work is to involve fuzzy order relation in the study of aggregation process (see eg.[3]). Namely, we use the fuzzy order relation instead of the crisp order relation in the definition of monotonicity. Recall that aggregation function is a mapping satisfying boundary conditions and the condition of monotonicity. In this work we focus only on the condition of monotonicity and define the degree of monotonicity in the following way:

Definition 1. Let \(f : [0, 1]^n \to [0, 1] \) be a function (aggregation function), \(P : [0, 1]^2 \to [0, 1] \) be a fuzzy order relation and \(\Rightarrow_T \) the residuum corresponding to a t-norm \(T : [0, 1]^2 \to [0, 1] \).
We define the degree of monotonicity for a function (aggregation function) \(f \) w.r.t fuzzy relation \(P \) and residuum \(\Rightarrow_T \) in the following way:

\[
M_{P, \Rightarrow_T}(f) = \inf_{x,y}(\land_i P(x_i, y_i) \Rightarrow_T P(f(x), f(y))).
\]

After giving main definitions we illustrate the introduced notions by examples and study the properties of aggregation functions which have a certain degree of monotonicity.

REFERENCES

\(^1\)This work was partially supported by ESF research project 2009/0223/1DP/1.1.1.2.0/09/APIA/VIAA/008.