Humic acid reduces gonadotropin activity and hormonal sensitivity of frog oocytes

H. Zenkevics a, M. Klavins b,∗, V. Vose a, A. Bucena a

a Institute of Biology, University of Latvia, Miera Street 3, LV 2169, Salaspils, Latvia
b Department of Environmental Science, University of Latvia, Raina Blvd. 19, LV 1586, Riga, Latvia

Received 11 February 2005; received in revised form 30 August 2005; accepted 6 September 2005

Abstract

The specific stimulatory effect of sturgeon Acipenser gullidenstadi Br. gonadotropic hormone (GTH) on frog Rana temporaria L. oocyte maturation in vitro was investigated in relation to humic acid (HA) concentrations from 12.5 to 50 mg/l. HA was observed to bind to both the follicular membrane of the oocytes and the GTH molecule, reducing the oocytes’ hormone sensitivity and maturation ability. It was also shown that HA inactivated GTH, lowering its specific ability to stimulate oocyte maturation.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Humic acid; Frog oocytes; Gonadotropic hormone; Hormonal effects

Humic substances (HS) are an intermediate, but persistent decay product of living organic matter and as natural compounds they are abundant in soils, peat, sediments, some fossil fuels and waters all around the world. HS can be characterized by variables such as mean molecular mass, shape and conformation of molecules, degree of polydispersity and distribution of molecular masses varying in a broad range from 400 to 1 000 000 Da (Hoque et al., 2003; Seitzinger et al., 2005). Structural organisation can occur both at molecular and molecular aggregate levels (Schulten and Schnitzer, 1993; Klavins, 1997). The chemical network structure of HS contains hydrocarbons, aromatic and heterocyclic structures, carboxyl groups, phenolic and alcoholic hydroxyls and possesses many active hydrogen bonding sites making them very chemically reactive.

HS can control variety of processes in freshwater ecosystems (Klavins, 1997). They can impact bioavailability or release of trace elements and may have influence on enzyme activities in fishes, invertebrates and macrophytes (Pflugmacher et al., 2001; Steinberg et al., 2004). Also, some hormone-like effects of HS have been shown in nematode Caenorhabditis elegans (Steinberg et al., 2002).

The aim of the study was to determine whether humic acid can modify the freshwater amphibian reproductive process. This was investigated employing the interaction of the frog hormone-sensitive oocytes with...
the sturgeon *Acipenser guldensis*ti Br gonadotropic hormone in a very specific and a highly sensitive in vitro biotest system "oocyte-hormone". Commercially available humic acid (HA) was purchased from Aldrich and additionally purified according to the recommendations by the International Humic Substances Society (Hayes and Clapp, 2001).

Chromatographically pure standard sturgeon gonadotropic hormone (GTH, *M*_r = 25 kDa) was isolated from acetone-dried pituitary glands according to a standard procedure (Zenkevics, 1992). The grass frog *Rana temporaria* L. oocyte in vitro maturation test (Thornton, 1971) was employed to assess the gonadotropic impact of GTH on the oocytes. The frogs were purchased in September and were kept in the dark cold room at 5°C. In total, 10 frogs were used in the study. The oocyte sensitivity to the hormone was expressed as the minimal dose of the hormone that produced 50% test-oocyte maturation (*D*₅₀).

Two sets of experiments were carried out. In the first three separate frog oocyte portions (30 oocytes) were preincubated for 48 h with HA concentrations of 12.5, 25 and 50 mg l^{−1} at 5°C in Petri dishes in Ringer solution (pH 7.5). After the exposure to HA, the oocytes were washed five times with fresh Ringer solution to wash off the residual HA and then tested in three parallel replicates with GTH concentrations of 0.1, 0.3, 0.5 and 1.0 mg l^{−1} to estimate the hormone sensitivity of the HA-pretreated oocytes. In the second set of experiments, three replicates of intact fresh oocytes were tested for 48 h using the same standard GTH concentrations in the same test system which contained the above HA concentrations in the test medium throughout the experiment. The effect of HA on oocyte GTH sensitivity in both cases was evaluated by the hormone concentration producing 50% oocyte maturation (*D*₅₀). The mean values of responses are reported.

The preincubation of the test oocytes with the HA concentrations of 12.5, 25 and 50 mg l^{−1} lowered the oocyte response to GTH depending on used HA concentrations at all hormone concentrations used (Fig. 1).

50 mg HA l^{−1} decreased more in comparison with that of the intact oocytes. The relative gonadotropic activity of GTH decreased almost three-fold, as indicated by the increase of *D*₅₀ values (Fig. 1).

Using the intact oocytes in the Ringer test solution containing the same HA concentrations (without preincubation but continuous presence of HA) also considerably lowered the oocyte sensitivity to the hormone (Fig. 2). The minimal effective concentration of GTH producing the oocyte 50% maturation turned out to be slightly higher than that in the first set of exposures in which the preincubated oocytes were tested in HA-free medium. In the presence of 12.5 mg HA l^{−1} the relative GTH activity dropped approximately two-fold, at HA concentration of 25 mg l^{−1} it decreased almost three-fold, and at HA concentration of 50 mg/l about four-fold in comparison with that of the standard (Fig. 2).
Thus, D50 of GTH increased by 20–30% in the tests using intact oocytes in Ringer solution in the continuous presence of HA in comparison with HA-preincubated oocytes, which consequently were hormone-treated in HA-free medium.

Humic substances are traditionally considered to be inert or at least refractory and too large to be taken up by aquatic organisms. In the same time many recent studies have demonstrated that dissolved humic substances are taken up and directly and/or indirectly interfere with freshwater organisms (Steinberg et al., 2004; Timofeyev et al., 2004). Recent investigations of humic substances have shown quite clearly that these natural compounds may impact number of physiological effects in plants and animals, including humans (Hseu et al., 2002; Timofeyev et al., 2004; Meems et al., 2004). Among them are induction of stress proteins, regulation of reproduction in frogs, suggesting that aquatic humic substances can directly affect freshwater organisms. Acta Hydrochim. Hydrob. 24, 29–40.

In order to determine whether HA may have any direct effect on GTH glycoprotein molecule function, the experiments were performed both with intact oocytes and standard GTH in HA-free and HA-containing test medium. The results indicate that in the presence of HA in the test medium, the sensitivity to GTH decreased further by 20–30% in comparison to experiments with oocytes preincubated with the same HA concentrations, but hormone-treated in HQA-free medium. Based on this finding, it is apparent that HA may affect not only the oocyte follicular membrane as demonstrated previously (Campbell et al., 1997), but also the hormone molecule thus producing deeper negative influence on the oocyte-hormone interaction. As a conclusion, HA may have an impact on the endocrine regulation of reproduction in frogs, suggesting that aquatic frog communities, and their reproduction, may be influenced by the concentration of HSs in the water.

References

Steinberg, C.E.W., Hoos, S., Bridgeman, R., 2002. Further evidence that humic substances have the potential to modulate the reproduction of the nematode, Caenorhabditis elegans. Int. Rev. Hydrobiol. 87, 121–133.

