
LATVIJAS UNIVERSITĀTES
RAKSTI
770. SĒJUMS

Datorzinātne un
informācijas tehnoloģijas

Scientific Papers
University of Latvia
VOLUME 770

Computer Science and
Information Technologies

Scientific Papers
University of Latvia
VOLUME 770

Computer Science and
Information Technologies

University of Latvia

LATVIJAS UNIVERSITĀTES
RAKSTI
770. SĒJUMS

Datorzinātne un
informācijas tehnoloģijas

Latvijas Universitāte

UDK	 004(082)
	 Da 814

Editorial Board

Editor-in-Chief:
Prof. Jānis Bārzdiņš, University of Latvia, Latvia

Deputy Editors-in-Chief:
Prof. Rūsiņš-Mārtiņš Freivalds, University of Latvia, Latvia
Prof. Jānis Bičevskis, University of Latvia, Latvia

Members:
Prof. Andris Ambainis, University of Latvia, Latvia
Prof. Mikhail Auguston, Naval Postgraduate School, USA
Prof. Guntis Bārzdiņš, University of Latvia, Latvia
Prof. Juris Borzovs, University of Latvia, Latvia
Prof. Janis Bubenko, Royal Institute of Technology, Sweden
Prof. Albertas Caplinskas, Institute of Mathematics and Informatics, Lithuania
Prof. Kārlis Čerāns, University of Latvia, Latvia
Prof. Jānis Grundspeņķis, Riga Technical University, Latvia
Prof. Hele-Mai Haav, Tallinn University of Technology, Estonia
Prof. Kazuo Iwama, Kyoto University, Japan
Prof. Ahto Kalja, Tallinn University of Technology, Estonia
Prof. Audris Kalniņš, University of Latvia, Latvia
Prof. Jaan Penjam, Tallinn University of Technology, Estonia
Prof. Kārlis Podnieks, University of Latvia, Latvia
Prof. Māris Treimanis, University of Latvia, Latvia
Prof. Olegas Vasilecas, Vilnius Gediminas Technical University, Lithuania

Scientific secretary:
Lelde Lāce, University of Latvia, Latvia

Editor:
Edgars Rencis

Layout:
Andra Liepiņa

All the papers published in the present volume have been rewieved.
No part on the volume may be reproduced in any form without the written permision
of the publisher.

ISSN 1407-2157 	 © University of Latvia, 2011
ISBN 978-9984-45-377-4	 © The Autors, 2011

Contents

Zane Galviņa, Darja Šmite
Software Development Processes in Globally Distributed Environment 7

Līva Šteinberga, Darja Šmite
Towards a Contemporary Understanding of Motivation
in Distributed Software Projects: Solution Proposal . 15

Renārs Liepiņš
lQuery: A Model Query and Transformation Library . 27

Andris Paikens, Zane Bicevska, Janis Bicevskis
Testing Computer Skills In Productive Environment:
Solution and Know-How . 46

Leo Truksans, Edgars Znots, Guntis Barzdins
File Transfer Protocol Performance Study for
EUMETSAT Meteorological Data Distribution . 56

Alina Vasilieva, Taisia Mischenko-Slatenkova
Computing Relations in the Quantum Query Model . 68

Dmitrijs Rutko
Fuzzified Algorithm for Game Tree Search with Statistical
and Analytical Evaluation . 90

Solvita Zariņa
Computer Scientists as Early Digital Artists . 112

Software Development Processes in
Globally Distributed Environment

Zane Galviņa1, Darja Šmite1, 2

1 University of Latvia, Latvia, 2 Blekinge Institute of Technology, Sweden
zane.galvina@lu.lv, darja.smite@{lu.lv | bth.se}

As a result of globalization, software is nowadays more often produced by development effort
from multiple locations. While global software development is regarded as more challenging than
even the most complex project managed entirely in-house, standards or methodologies dedicated
for this type of projects are still lacking. Based on an extensive literature review towards an
understanding of industrial practice regarding software development processes, authors of this
paper conclude that the evidence on how such projects are organized is scarce. Despite the limited
evidence, authors present the deduced models of development processes presented in selected
literature and summarize the main challenges that may affect project management processes.

Keywords: Software Engineering, Distributed development, Software Development Process,
Global Software development.

1 Introduction
Due to continuous increase in competition in the field of Information Technologies,

companies are forced to provide products and services, which coincide with efficient
and effective development, and high quality standards that are economically viable.
Agile development is a movement that has entered software engineering to bring faster
and cheaper development through lightweight process thinking and entrusting work to
skilled people rather than enforcing heavy documented standardized process models.
Another way to achieve competitiveness is to start distributing development globally in
order to gain a benefit from getting more and cheaper resources. In this paper, the focus
is brought on the latter. Unfortunately, many of the assumed benefits of global software
development are associated with significant challenges [1] that hinder smooth project
performance. Thus, a better understanding of processes undergoing in software projects
in distributed environment may help to find the necessary improvements and reach the
promised benefits.

A closer look at the main difficulties reveals that geographical distance inherent in
distributed environment, in which software project team members are separated in space
and time, has significant impacts on communication, coordination and other processes

Scientific Papers, University of Latvia, 2011. Vol. 770
Computer Science and Information Technologies	 7–14 P.

Zane Galviņa, Darja Šmite
Software Development Processes in Globally Distributed ..

8 Computer Science and Information Technologies

[2, 3]. Many reams have been written to describe these challenges while solutions in this
area are still not well-represented [1]. While traditional software engineering is managed
with the help of various well-known life cycle models, development and management
methodologies and standards, the area of distributed work is relatively unexplored and
there is still no standard approach to run distributed projects.

The underlying assumption of software process research that stresses the importance
of this area is the direct correlation between the quality of the process and the quality
of the developed software [4]. Since the invention of the waterfall lifecycle [5], many
process models have been introduced varying from disciplined well-defined processes
to undisciplined and ill-defined processes, and from heavy and slow to light and agile
processes [6]. Software lifecycle, in fact, is a skeleton and a philosophy, which defines,
how software processes will be carried out, and specifies such characteristics as tools,
infrastructure, environment, methods and techniques, organizations and people etc. [4].
Along with the distribution of software projects, the role of a clear understanding of
software lifecycle and processes emerges. Because distributed software projects are
regarded as more complex than even the most complicated projects performed entirely
in-house [7], we conjure that it is also important to explore whether the very notion
of the lifecycle does not change with distribution. In other words, the dualistic (or
multiplistic) nature of distributed software projects could also affect the way one should
view, specify, and perhaps execute distributed software project lifecycles.

Motivated by this gap, authors of this paper aim to explore different lifecycles
and work division approaches and their relation to existing process models. Thus, the
following research questions are put forward:

RQ1:	 How are distributed projects organized in terms of process patterns?
RQ2: 	 Are there successful or unsuccessful process patterns?

The rest of the paper is structured as follows. Section 2 presents the overview of
the research process. Section 3 presents the results of the literature review – presented
development process models and challenges affecting project management as well as
process specifics. Finally, Section 4 concludes the paper.

2 Research Overview
In order to answer the research questions mentioned above, an extensive selected

literature review was conducted. Research papers were collected from the following
venues being regarded as the key publication sources in the area of global software
engineering:

•	 Proceedings of the Inter. Conf. on Global Software Engineering 2006-2009;
•	 Communications of ACM special issue on GSE – 49(10)/2006;
•	 SPIP special issues on GSE – 8(4)/2003, 13(3)/2008, 13(6)/2008, 14(5)/2009;
•	 IST special issue on GSE – 49(9)/2006;
•	 IEEE Software special issues on GSE – 18(2)/2001, 23(5)/2006.

9Zane Galviņa, Darja Šmite. Software Development Processes in Globally Distributed ..

In total, 261 papers were collected and reviewed. Since global development is quite
a broad concept, several criteria were taken into account in order to screen the papers
and select the relevant ones. The screening was performed by the first author.

•	 Criterion 1. The paper reports information about distributed software
development project. Thus, if the title clearly states that the article is about a
comparison of different tools used in distributed development, the paper was
rejected. In case of very general titles abstracts were read. Most of the authors
present detailed information about the paper in the abstract, so to understand
whether this criterion was satisfied, a review of introduction and/or conclusion
was necessary only in few situations.

•	 Criterion 2. The paper presents more specific information about the work
division methods or process location (detailed description of a process) in a
project. Since this criterion is more specific, we could identify it only after
reviewing introductions and conclusions.

After reviewing the 261 initially collected papers, only 8 papers were regarded as
relevant for further analysis. Since the amount of selected papers was very low, which
threatened the validity of conclusions, we continued searching through the reference
list of the selected 8 papers. The gathered references resulted in the identification of 97
additional hints. Further collection was based on 4 criteria:

•	 Criterion 3. Availability of reference (6 papers were not found).
•	 Criterion 4. Reference written in English (5 papers failed).
•	 Criterion 5. Conference proceedings or journal paper (40 references failed).
•	 Criterion 6. Unique paper (8 references were duplicates).

Finally, 34 papers were included for a more thorough review of their relevance
for the topic under investigation, but they failed after the evaluation using criterion 1
and criterion 2. After applying the next four criteria, only 4 papers were considered for
further analysis. A total of 12 papers were carefully read, and the information about the
process distribution, locations, work division and associated challenges was mapped for
further analysis. The information was captured in a protocol and then broken down to
the following topics of discussion (see Fig. 2.1).

Fig. 2.1 Emerging observations

10 Computer Science and Information Technologies

3 Research findings
Our observations show that the most commonly discussed issues are related to general

project information or description of methodology and processes, which are followed.
Authors often describe the issues faced in the studied projects and present guidelines
how to overcome these challenges. In the majority of the cases, these challenges are
related to the whole project, and not to a specific project lifecycle or work division
approach. This was also one of the reasons for excluding many studies from the final
analysis. Nonetheless a few useful observations were made and are discussed below.

3.1 Definition of processes

While every organization adopts a suitable lifecycle or process model, the notion
of following one lifecycle or process model in distributed projects is challenged
by collaboration among several organizations often having their own processes,
methodologies, and tools. Lack of standards in the activities between distributed teams
is regarded as a problematic setting [8]. A lack of coherent development or execution
processes is also reported in several other studies [9, 10, 11]. According to Sudershana et
al., lack of clear process for project execution leads to increased level of frustration and
decreased feeling of ownership, which ultimately results in a very poor acceptance level
at the remote location [9]. This finding indicates that a process definition including work
division and allocation strategies that clarify roles and responsibilities are essential.

3.2 Distribution of processes

It is difficult to decide whether a particular project should be developed by globally
dispersed teams – and where it can be better developed, as well as how to divide it across
sites [8]. Among the accepted papers there are several describing a certain distribution
of phases and also phase allocation strategies. At the same time, several projects include
a detailed description of each phase.

The available information was sufficient only to study different variations of phase
allocation strategies. In particular, we studied Requirements engineering, Design,
Coding and Testing phases and their allocation to different organizations or sites. One of
our goals was however to find out what kind of work division approaches were adopted
in each project, including different activities and roles each organization played. This
is particularly important when a phase is shared by two organizations, since this can be
done in a variety of ways. We failed at this point because the presented details about
the projects were scarce. Therefore, only conclusions from studying different phase
allocation strategies are discussed.

For simplicity reasons, we demonstrate different approaches by depicting phases in
a sequential manner distributed between only two sites. This has been done to categorize
all the selected models. Three possible alternative divisions would have been available –
1) strict phase separation, 2) joint execution, and 3) hybrid approach (see Fig. 3.2.1)

Fig. 3.2.1 Work division approaches.

11Zane Galviņa, Darja Šmite. Software Development Processes in Globally Distributed ..

In the answer to the RQ1, we conclude that hybrid division of work [9, 12, 13, 14]
is more common than a strict allocation of phases or joint execution of the whole project
[10] (see Fig.3.2.2). Possible reasons for the dominance of hybrid models are twofold.
We assume that joint execution is an option for site A to mitigate the risks through
control and partial participation in the work of site B, and vice versa – involvement of
the site B in the activities executed by the site A is an option to mitigate the challenges
of information sharing and knowledge transfer in later phases. At the same time, certain
key or critical phases, such as requirements engineering, are executed independently
due to, e.g., proximity to the customers.

Fig. 3.2.2 Work division models [9,10*,12, 13, 14].
*presents many division models.

While reading project descriptions, several common uncertainties were identified.
First of all, one may wonder, whether a phase is performed jointly, are all activities
performed jointly too, or do organizations split the work? Secondly, if employees from
one site are moved to another site for the entire phase, does that mean that the phase is
allocated at one site, or performed jointly? From these questions we conclude that the
phase visualization has its limitations and the process description shall allow reflecting
answers to all these questions.

3.3 Processes and project success

Unfortunately, the success or failure of the work activities or work division
approaches was not explicitly discussed. From the studied research, it was not possible
to determine the factors, which have had an influence (positive or negative) on projects.
This is yet another case were we have stumbled upon a lack of description of the project
lifecycle models, work distribution or even phase allocation, which significantly affected
the ability to drive any meaningful conclusions regarding successful or unsuccessful
process patterns (RQ2).

Despite the different approaches to work division, each of the studied hybrid projects
faced many challenges. It shows that there are no universal development model for all
projects and organizations. Each organization has to choose the most appropriate model
for their situation.

12 Computer Science and Information Technologies

3.4 Processes and challenges

One of the objectives was to understand whether the selected work division model
in a project makes an impact on a project management. Project management is the
application of knowledge, skills, tools and techniques to project activities in order to
meet project requirements [15]. The following key challenges found in the literature can
be linked with one or several knowledge areas of project management.

Joint execution with no standards for the interface between the sites.
Usually, every organization has their own standards, defined processes, which they

follow, but no standards determine how to join them or how to work together [8]. This
has mainly an effect on the project integration management.

Joint execution with limited synchronous interaction.
This is a challenge that is manifested in projects involving sites separated in time. It

is more complicated to share information between team members that lack synchronous
communication or have limited overlap in working hours [8]. In such cases, tools for
sharing information commonly used in software projects are of little help. Hampered
communication and coordination delay are also consequences of asynchronous
interaction [11]. This affects project coordination, scope and time management as well
as communication management significantly.

Joint execution requires more time than co-located work.
Tasks in global software development projects often take much longer than in co-

located environments [11]. In order to estimate activity duration or develop a common
schedule for project, it is not enough to rely on experience from co-located projects.
This affects the project time management as well as the scope management.

3.5 Specifics of processes

From our observations we deduce that the decisions of process model are closely
affected by the work allocation to different sites and the chosen level of sharing the
processes, phases or activities. In the following figure, we offer our understanding of
process-specific factors of concern, based on a class diagram of a software process
model defined in [16].

Accordingly, we emphasize that each phase can be allocated to an organization
(or its site). However, for the clarity of roles and responsibilities it is also important to
specify which activities are going to be performed by each location or joint.

A study depicting the proposed work division details would be sufficient to categorize
the projects according to the following four main work division approaches [17]:

•	 Phase-based approach – This is a division of work by phase/process step, when
globally dispersed sites engage in different phases of a project in a sequential
manner [17].

•	 Model-based approach – Division of work by product structure (product
module), when each product module/feature is developed in a single site [17].

•	 Distributed approach – Division of work that minimizes requirements for cross-
site communication and synchronization; however, only for particular types of
product architectures [17].

•	 Customization-based approach – This is a division of work based on product
customization, so that one site develops the product and other sites perform

13Zane Galviņa, Darja Šmite. Software Development Processes in Globally Distributed ..

customization, that is, changes such as adding features and enhancements for
specific customers [17].

Fig. 3.5.1 Process model (extension of [16])

We consider it to be important that the above-discussed details must be specified
by authors of empirical studies of distributed projects who report the success or failure
of certain projects, processes, approaches, or practices, in order to further trace the
main reasons to the process organization. This could further facilitate determination of
successful or unsuccessful process patterns.

4 Conclusion
The efforts directed towards capturing different approaches used in practice and

reported in academic literature showed that research on description of process models
and work division practices in globally distributed projects is scarce. More often, the
studies present the main challenges but do not mention the necessary information about
the project context, which confirms the findings from a systematic review in this area [1].
Our findings also show that it is not possible to strictly define or make any conclusions
about the best strategy for process allocation and work division. Despite that, we were
able to identify several key challenges related to project management that arise from
joint execution of task. This paper also presents an extension of an existing process
model and emphasizes the necessity for accurate description of distributed projects.

By evaluating the ratio between the amount of selected papers for further analysis
and the rest of the papers initially collected from the venues that represent research in
the studied field, we can also conclude that there is a need for additional studies in this
area, i.e. the understanding of software processes in distributed projects. To foster the

14 Computer Science and Information Technologies

progress, we present specifics of processes necessary to be identified in future research.
We also encourage reporting complete and comprehensive information about the studied
projects.

References
1.	 Conchúir, E. Ó., Holmström, H., Ågerfalk, P.J., & Fitzgerald, B. “Exploring the assumed benefits of

global software development”. In P. Fernandes et al. (Ed.), IEEE International Conference on Global
Software Engineering. Los Alamitos, CA: IEEE Computer Society, 2006, pp.159-168.

2.	 Damian D, Zowgui D. “The Impact of stakeholders’ geographical distribution on managing requirements
in a multi-site organization”. Proceedings of International Conference on Requirements Engineering,
Monterey,CA, 2002.

3.	 D. Šmite, C. Wohlin, R. Feldt, T. Gorschek “Empirical Evidence in Global Software Engineering:
A Systematic Review”, In: Journal of Empirical Software Engineering, Vol. 15, Nr. 1, February 2010,
pp. 91-118.

4.	 Fuggetta A. “Software process: a roadmap”. In Proceedings of the Conference on The Future of Software
Engineering (ICSE ‘00). ACM, New York, NY, USA, 2000, pp. 25-34.

5.	 Royce W. W., “Managing the development of large software systems: Concepts and techniques,” Proc.
WESCO, 1970.

6.	 Rodriguez-Martinez L.C., Mora M., Alvarez F.J, “A Descriptive/Comparative Study of the Evolution of
Process Models of Software Development Life Cycles (PM-SDLCs),” Mexican International Conference
on Computer Science, 2009, pp. 298-303.

7.	 Karolak, D. “Global Software Development: Managing Virtual Teams and Environments”. Wiley-IEEE
Computer Society Pr; 1st edition, December 27, 1998.

8.	 Prikladnicki R.,Audy J., Evaristo R. “Global Software Development in Practice Lessons Learned”.
Software Process: Improvement and Practice.2003, pp. 267-281.

9.	 Sudershana S., Villca-Roque A., & Baldanza J. “Successful Collaborative Software Projects for Medical
Devices in an FDA Regulated Environment: Myth or Reality”. Proceedings of International Conference
of Global Software Engineering, 2007, pp. 217-224.

10.	 Berenbach, B., “Impact of Organizational Structure on Distributed Requirements Engineering Processes:
Lessons Learned”, Workshop on Global Software Development for the Practitioners at ICSE, Shanghai,
2006, pp. 15-19.

11.	 Peter Faßbinder, Volker Henz, “Improving Global System Development and Collaboration across
Functions: Experiences from Industry,” Proceedings of International Conference of Global Software
Engineering, 2009, pp.262-266.

12.	 Caprihan G. “Managing Software Performance in the Globally Distributed Software Development
Paradigm”. Proceedings of International Conference of Global Software Engineering, 2006, pp. 83-91.

13.	 Burger W. “Offshoring and Outsourcing to INDIA”. Proceedings of International Conference of Global
Software Engineering, 2007, pp. 173-176.

14.	 Cusick J., & Prasad A. “A practical Management and Engineering Approach to Offshore Collaboration”.
IEEE Software, 2009.

15.	 A Guide to the Project Management Body of Knowledge (PMBOK Guide). American National Standard,
2004.

16.	 Karolak, D. “Global Software Development: Managing Virtual Teams and Environments”. Wiley-IEEE
Computer Society Pr; 1st edition, December 27, 1998.

17.	O shri I., Korlarsky J., & Willcocks L.P. “The Handbook of Global Outsourcing and Offshoring”. Palgrave
Macmillan 2009.

Towards a Contemporary Understanding of Motivation in
Distributed Software Projects: Solution Proposal

Līva Šteinberga1, Darja Šmite1,2

1University of Latvia, 2Blekinge Institute of Technology
liva.steinberga@lu.lv, darja.smite@{lu.lv | bth.se}

Team motivation in software engineering is reported to have the largest impact on productivity,
software quality and project overall success. Yet, as it is a soft factor and thus difficult to
quantify, it usually takes a backseat. In fact, research on motivation and its interplay with
different environmental factors in software engineering projects is scarce. Built on the basis
of a recent systematic review on software engineers’ motivation, in this paper, we emphasize
the lessons learned from related studies regarding the factors determining team motivation.
Further implications of distributed environment on motivation and the positive impact of agile
practices are discussed and illustrated by examples from related studies. The contrasted project
types (distributed and agile) suggest that blending agility into distribution might solve problems
inherent in this type of environment. Finally, future research directions are suggested for project
improvement through motivation.

Keywords: Motivation, Distributed Teams, Agile Teams, Distributed Agile Teams.

1 Introduction
Nowadays, in a quest for cheaper and faster high-quality software development

many organizations have turned towards globally distributed software development [1].
Global software development (GSD) claims to enable the benefits of accessing larger
resource pool, and reducing development costs in organizations that overcome the
challenges of geographical distance [2]. As a result, nowadays, software projects more
often involve geographically and temporally distributed and culturally diverse team
members. These unique characteristics create significant challenges for communication,
coordination and social networks [3] and being unable to overcome the new challenges a
high number of global projects fails [4]. The emphasis in global projects is thus believed
to be required for human aspects [5], which among other potential reasons of failure are
often neglected since they are not easy definable and quantifiable.

Team motivation in software engineering is reported to have the largest impact on
productivity, software quality and project overall success [6]. Nonetheless, motivation in
global software teams has been relatively unexplored. To fill this gap we investigate what

Līva Šteinberga, Darja Šmite
Towards a Contemporary Understanding of Motivation ..

Scientific Papers, University of Latvia, 2011. Vol. 770
Computer Science and Information Technologies	 15–26 P.

16 Computer Science and Information Technologies

motivates and what de-motivates software engineers, and how these influencing factors
are manifested in global software projects. Furthermore, we consult related studies of
agile teams from the past few decades, in which considerable effort has been devoted
to exploring the social characteristics of software projects, as compared to research on
traditional projects. This approach is built on team-centred philosophy and has inherent
factors influencing motivation of software engineers. Inspired by related studies, we
draw attention to potential areas of improvement with implications for practice and
future research.

2 Background — Motivation in Software Teams
Motivation has been described as a source of performance improvement, which

leads to productivity gains through exploitation of effective teamwork, in which team
members act selflessly and contribute to the greater good [7]. In such teams, the team is
more than the sum of its parts [7].

First experiments that demonstrated the influence of the team motivation on
productivity were conducted by Elton Mayo in 1924, but later studies have confirmed
the same results in several industries [8]. Mayo’s experiments for the first time
evidenced that workplaces are social environments, where people are motivated by
many factors other than economic interest. He concluded that recognition, security, and
sense of belonging were more important to productivity and morale or motivation, and a
friendly relationship with the supervisor was very important in securing the loyalty and
cooperation of the team [8].

In 1981, Barry Boehm reported that motivation has the single largest influence on
quality and productivity than any other factor in software development, while in 1999,
DeMarco and Lister’s survey showed that the lack of motivation is one of the most
frequently cited causes of software development project failure [6]. So far there are no
other aspects claimed to have bigger influence on project effectiveness than developers’
motivation, therefore it is important to understand what motivates software engineers to
perform well and also what de-motivates them.

In 1978, Couger and Zawacki began a discussion whether software engineers
form a distinct occupational group with similar needs and motives, and the discussion
is still on-going. They surveyed the job perceptions of more than 6000 people from
different professional areas and concluded that software engineers found their work less
meaningful and rated their jobs less favourably than other professionals, their need to
interact with others was negligible; they had very high growth needs and were concerned
about learning new technology [9]. Beecham et al. in their systematic review on
motivation confirmed that a little more than a half of empirical studies (54%) conducted
in this field until year 2006 regarded software engineers as a distinct occupational group,
while 24% of the studies denied this categorization [6].

There are several classical motivation theories, which can be applied in order to
explain what motivates software engineers (such as Abraham Maslow’s Hierarchy
of needs, Clayton Alderfer’s ERG theory, Frederick Herzberg’s Motivation-hygiene
theory, David McClelland’s achievement motivation theory and others). One of
the contemporary aspects of understanding motivation prescribes a division of the
influencing factors into intrinsic and extrinsic [8, 9]. Intrinsic factors address the work

17Līva Šteinberga, Darja Šmite. Towards a Contemporary Understanding of Motivation ..

itself and the goals and aspirations of the individual, such as achievement, possibility
for growth, social relationships, security, etc. Extrinsic factors are concerned with the
surrounding environment brought by the organization to the individual, such as praise,
communication, office space, responsibility, money etc.

Beecham et al. in their report on the motivation of software engineers have gathered
motivators and de-motivators for software engineers from 92 empirical studies [6]. They
have identified some of those factors as inherent for software engineering. In total, 29
motivators and 15 de-motivators have been collected; those manifested in distributed
and agile projects are listed in tables 1 and 2.

It is worth noting that authors of the systematic review have also captured the
external signs associated with motivated and de-motivated software engineers, such as
retention, productivity, project delivery time, budgets, absenteeism and project success
[6]. While global projects are often suffering from similar negative impacts [4], our
investigation in this paper is driven by the question whether a lack of motivation and
presence of de-motivators can be the cause of failure.

3 Research Overview
The aim of our investigation is to understand the implications of motivational

research regarding distributed software teams. More specifically, we consult research
on agile software development projects for learning from team-centred approaches to
increase the productivity and success ratio of distributed software projects. The research
is thus driven by the following research questions:

RQ1: How the known motivators and de-motivators of software engineers are
manifested in distributed software development projects?

RQ2: What can we learn from agile projects to eliminate de-motivators and enable
motivators in distributed software development projects?

To address these research questions, we base our investigation on the results of
the systematic review performed by Beecham et al. [6]. Manifestation of the identified
motivators and de-motivators is explored through relating research findings from the
field of global software engineering. It is worth noting that no extensive literature
review is performed. Our goal in this paper is to exemplify manifestation of motivating
and de-motivating factors. Further, we highlight the main areas of concern and conjure
these as problems inherent in the nature of the distributed environment. We explore the
factors related to motivation enabled by inherent characteristics of agile methods, and
propose the potential areas of improvement for distributed projects inspired by agile
approaches.

4 Findings
4.1 Motivation in Distributed Projects

To the best of our knowledge, no research dedicated to motivation can be found in
the area of commercial distributed or global software development (with an exception
of Open Source development projects, which are also distributed and global, but not

18 Computer Science and Information Technologies

commercial). By distributed projects, we mean such software development projects, in
which tasks (be it a phase or a development task) are split among several geographically
distant locations. These locations can be represented by sites of the same company
(offshore insourcing) or different companies (offshore outsourcing). The findings
from related research in the area of global software engineering point out evidences
of various de-motivating factors caused by distribution. Our observations suggest that
some of these factors are inherent in the very nature of distributed projects, and thus de-
motivation among software engineers in such projects may be manifested more often
than in similar projects with co-located members. Hereby, we discuss motivators and
de-motivators that have a special meaning in distributed projects in a concise way with
examples of specific manifestation in distributed projects supported by the references
to related research.

	 4.1.1 Manifestation of motivators in distributed projects

We have found that motivators such as Change, Benefit and Problem solving, Science,
Experiment, Identification with the task, Career path, Variety of work, Recognition for
work done, Development needs addressed, Making contribution or task significance,
Rewards and incentives, Feedback, Job security, Good work life balance, Appropriate
working conditions, Working in a successful company, and Sufficient resources are
more generic and are thus not affected by distribution.

Challenge / Intrinsic motivator: Enabled. Software engineering is regarded as a
challenging profession [6]. In its turn, globally distributed development is recognized to
be considerably more challenging than even the most complex project managed entirely
in-house [4, 10]. Thus, we can claim that challenges are triggered by distribution.

Team work / Intrinsic motivator: Challenged. Developers are recognized to be
motivated by working in a team of other professionals rather than alone [6]. Distributed
teams on the contrary tend to be divided into sub-teams by location and often experience
cross-site competition instead of collaboration [10], which is regarded as “us and them”
attitude [11]. Also, distribution makes it difficult to apply mutual adjustments and
supportive behaviour, which are commonly used in effective teamwork and especially
important for dealing with complex tasks [12]. Thus, we can conclude that although
teamwork can be established inside the co-located sub-teams, motivation from the
cross-site teamwork perspective is likely to be challenged.

Development practices / Intrinsic motivator: Challenged. While developers can
feel united around the use of a certain methodology or development practice, for example,
object-oriented, agile, or prototyping practices [6], cultural and also organizational
differences associated with distributed projects often lead to discrepancies in the work
habits [13] and sometimes to enforced use of the other site’s methodology, which might
de-motivate the developers.

Technically challenging work / Intrinsic, general motivator: Challenged.
Work is found to be motivating if it is not mundane and is technically challenging [6].
Unfortunately, companies often practice outsourcing of routine tasks and keeping the
more interesting work for themselves. This could be one of the reasons why offshoring,
in particular to India, is often associated with rapid turnover of employees.

Autonomy / Intrinsic, general motivator: Challenged. Freedom to carry out tasks
letting roles evolve is regarded as a motivator for software engineers [6]. In distributed

19Līva Šteinberga, Darja Šmite. Towards a Contemporary Understanding of Motivation ..

projects, remote sites are often closely supervised by their headquarters [14] and even
regarding technical decisions autonomy may be limited [15]. This is one of important
factors to be considered in distributed projects, in which site inequity (discussed later)
can further complicate the morale of the remote sites.

Empowerment or responsibility / Intrinsic, general motivator: Challenged.
Responsibility for the task is recognized as a motivator for software engineers to perform
better [6]. However, remote sites, e.g., in offshore development relationships, are more
often involved only in partial activities (only coding, only testing or only maintenance
activities [16]) and do not receive the responsibility for the whole development project.
While the onshore part of the team is often working on the functionality holding the
ownership and thus, in addition, creating an iniquity between the parts of the team.

Trust, respect or equity / Intrinsic, general motivator: Challenged. Trusting and
respecting other people, treating and managing them fairly has been identified as one of
the key motivators for software developers [6]. Meanwhile, there is a number of studies
reporting lack of trust as one of the major problems in globally distributed software
development teams (such as [14], [17], [18]). Key factors that cause the lack of trust
are poor socialization and socio-cultural fit, increased monitoring, inconsistency and
disparities in work practices, reduction of communication, lack of face-to-face meetings,
poor language skills, lack of conflict handling, lack of cognitive-based trust [14], and
others. Those factors also relate to other motivators identified by Beecham et al. [6]. For
instance, autonomy is another key motivator, hindered by increased monitoring.

Employee participation / Intrinsic, general motivator: Challenged. This
motivator can be described by involvement in the company and working with others [6].
Herbsleb and Mockus have found that distributed work items appear to take about two
and a half times as long to complete as similar items where all the work is co-located
[3]. Aiming to find the reasons behind such a gap in productivity, they had observed
that communication, coordination and social networks in distributed teams may differ
from single-site counterparts in a way that it requires more people to participate thus
introducing a delay [3].

Sense of belonging / Extrinsic motivator: Challenged. Sense of belonging to the
team and supportive relationships between team members is regarded as an extrinsic
motivator. In distributed teams, however, this remains one of the greatest challenges.
According to Herbsleb and Mockus, people at different sites are less likely to perceive
themselves as a part of the team [3]. This is illustrated by conflicting work styles
adopted in the remote locations and by the perception that distant colleagues are less
likely to help out when workloads are especially heavy. They thus conclude that cross-
site relationships compared to same-site relationships are less oriented towards mutual
benefit [3].

	 4.1.2 Manifestation of de-motivators in distributed projects

We have found that de-motivators such as Risk, Stress, Unfair reward system,
Uncompetitive or poor pay and unpaid overtime, Unrealistic goals and phoney
deadlines, and Poor management are more generic and thus are not directly attributed
to distribution.

Inequity: Triggered. Recognition based on management intuition or personal
preference is regarded as de-motivating in software engineering [6]. Inequity in distributed

20 Computer Science and Information Technologies

projects is expressed in various ways. It can be related to the already mentioned “us and
them” attitude [11]. It is also manifested in various ways through unequal rules and
requirements on remote sites. For example, members of highly distributed teams that
work across multiple time-zones are often required to shift their working hours [19]
creating dissatisfaction in long term. In addition, the time shifting is often tolerated
by the offshore sites (late shifts [19]), while the work hours for the headquarter site or
onsite teams often remain unchanged.

Interesting work going to other parties: Triggered. Beecham et al. [6] also
indicate that software engineers may be de-motivated by being separated from the other
team members and by outsourcing the most interesting work to other sites [6]. This is
the case in companies that are downsizing their development budgets and sending the
work to outsourcing suppliers. In such projects (we call them onsite), personnel will be
de-motivated. In other projects, where boring work is sent offshore to free up onshore
employees for new projects [20], the offshore site will become de-motivated.

Lack of promotion opportunities/ stagnation/ career plateau/ boring work/
poor job fit: Triggered. In line with the above, it appears that some companies practice
offshoring through a relocation of more stable work, such as software maintenance
and bug fixing, in order to free up onsite resources for the new development and thus
more interesting work [20]. This is another example of inequity, boring work and
stagnation, and also a manifestation of poor motivation in offshore sites, which could
be an explanation for the sequential rapid turnover of employees in the sites that receive
boring work.

Poor communication: Triggered. Feedback deficiency from colleagues and
software users is de-motivating for software engineers [6], but one of the most
demoralizing bad practices is the loss of direct contact to all levels of management
for each staff member [21], which is very likely to occur in distributed setting due to
geographic and often temporal distance.

Bad relationship with users and colleagues: Triggered. Software engineering is
a complex field and the most problems can nowadays be effectively solved only by
effective teamwork performed by engineers with a help from software users. Therefore,
it is very important to form a cohesive team and maintain friendly and supporting
relationships with users. Thus, bad relationships with users and colleagues can hinder
one from motivation to work effectively [6]. In a distributed setting, it can be complicated
to establish good and close relationships with remote colleagues and users because of
the mentioned geographic and temporal distances, because it is more and more common
that developers from different sites never meet [14].

Poor working environment: Triggered. Wrong staffing levels and unstable,
insecure working environment lacking investment and resources is likely to de-
motivate employees [6]. Being physically separated from the team can negatively affect
software engineer’s performance [6]. This factor is inherent for staff from remote sites
in distributed software development.

Poor cultural fit/ stereotyping/ role ambiguity: Triggered. Software engineers
share national, occupational and organizational cultures. If one does not feel like
belonging to the culture, it could be disturbing and serve as a de-motivating factor. There
is evidence about reciprocal stereotyping of software engineers by managers as a de-
motivator [22] and role ambiguity, which involves uncertainty about role responsibilities,

21Līva Šteinberga, Darja Šmite. Towards a Contemporary Understanding of Motivation ..

expectations, or tasks [23]. These factors are likely to occur in a distributed setting due
to socio-cultural distances that are associated with these projects [19].

Producing poor quality software: Triggered. It is observed that poor outcome of
the work de-motivates software engineers [6]. Meanwhile, a transfer of software work
from one site to another is recognized to have a negative impact on both productivity of
software engineers and resulting quality of the outcome. It happens due to significant
challenges of learning to handle the already developed software being unknown [20].

Lack of influence or no involvement in decision-making: Triggered. Distribution
among the offshore sites and the headquarters, and especially temporal dislocation, leads
to the feeling of lagging behind [19]. This is likely to have an impact on teamwork and
all associated activities, such is decision-making. Thus, offshore sites are naturally left
with a limited influence on the project.

4.2 Motivation in Agile Projects

Agile movement has emphasized the importance of human aspects in software
development by manifesting one of its values “Individuals and interactions over
processes and tools” and its principle “Build projects around motivated individuals.
Give them the environment and support they need, and trust them to get the job done”.
Melnik and Maurer have described agile methods as human-centric bodies of practices
and guidelines for building software in unpredictable and highly-volatile environments
[24].

So far, the most popular agile practices are Extreme Programming (XP) practices,
which among other benefits originally hold values of daily face-to-face communication
between all project team members and have a regular feedback on the work done. There
are several evidences that XP environment gives a grater job satisfaction and increases
code quality [7]. Since those two signs are closely connected with external signs of the
motivation of software engineers mentioned beforehand in section 2, it can be derived
that XP environment is highly motivational. Besides, there are studies, which confirm
that the more practices are incorporated in the development process, the higher is the
positive emotions experienced by the developers [25]. Further, we discuss how different
practices address motivation of software engineers.

Iterations and small releases. Iterations and small releases enable software
engineers to receive early and frequent feedback and recognition for well-done job from
all the stakeholders. It increases the self-esteem of the software engineers and the level
of trust between them and the customer [8].

Enables: Feedback, Recognition, Trust/ respect.
Helps to avoid: Unrealistic goals/ phoney deadlines.
Simple design, continuous testing and continuous integration. Continuous

software development process provides early feedback which prevents from delays and
integration problems later thus avoiding employee dissatisfaction.

Enables: Feedback [25].
Helps to avoid: Unrealistic goals/ phoney deadlines.
Regular face-to-face meetings. Daily stand-up or weekly face-to-face meetings

address the need for developers to feel they are making progress, which is common in
groups of professionals with a high need for personal growth and development [26].
Besides, regular meetings ease and speed communication and collaboration [27]. This

22 Computer Science and Information Technologies

practise and small chunks of action assigned to individuals support sense of belonging
to the team and maintain team awareness of member activity [26].

Enables: Sense of belonging, Good management, Identify with the task,
Empowerment / responsibility, Employee participation, Team work.

Helps to avoid: Poor communication, Poor management, Producing poor quality
software [27], Unrealistic goals/ phoney deadlines [7].

Pairing. Pairing motivates software engineers because it addresses the need for
learning, autonomy and social activity [7], and it also provides feedback [25]. However,
pairing can be de-motivating if pairs have personality conflicts [7] or continuous pairing
is too intense [26]. Individuals can become bored with regular rhythm of development
and become dependent on working in pairs thus losing their confidence to work alone
[26].

Enables: Autonomy, Feedback, Development needs addressed, Bad relationships
with colleagues.

Helps to avoid: Poor communication, Producing poor quality code.
Self-organizing team. Software engineers in XP environment are working in self-

organising teams which means that individuals are given an autonomy or freedom to
carry out tasks themselves, allowing roles to evolve. As reported by Beecham et al.,
this trait of XP teams is one of the main motivators for software engineers in general
[6]. It also discourages from working in an insular myopic fashion that de-motivates
other members of the team [26]. In self-organizing teams, a principled leadership is
applied which allows software engineers to make the decisions that affect them and
participate in personal goal setting which is found to increase the job satisfaction [6].
Agile developers have been found to be motivated by working with people who possess
very good communication skills [26] and who are highly competent [8]. On the other
hand, the lack of these traits has been found de-motivating. De-motivating factor in XP
environment is that individual inputs into the project might be subsumed by the whole
team, thus impacting promotion opportunities [26].

Enables: Autonomy, Empowerment/ responsibility, Career path, Lack of promotion
opportunities.

Helps to avoid: Lack of influence/ not involved in decision making/ no voice.

5 Discussion — Blending Agility with Distribution
Evidence from empirical studies in the area of global software engineering suggests

that this type of environment is full of challenges that trigger de-motivators and hinder
motivators for software engineers. In the following tables, we present a summary of the
findings from exploring distributed projects and agile projects.

23Līva Šteinberga, Darja Šmite. Towards a Contemporary Understanding of Motivation ..

Table 1

Motivators (based on [6]) Manifested in Distributed and Agile Projects

Motivators

C
ha

lle
ng

ed

by
 d

is
tr

ib
u-

tio
n

Tr
ig

ge
re

d
by

di

st
ri

bu
tio

n

So
lv

ed
 in

A

gi
le

INTRINSIC MOTIVATIORS
Challenge 

Team work  

Development practices  

General motivators
Identify with the task  

Variety of work  

Recognition for work done  

Technically challenging work 

Autonomy  

Empowerment / responsibility  

Trust / respect / equity  

Employee participation  

EXTRINSIC MOTIVATORS
Sense of belonging  

Feedback  

Table 2

De-motivators (based on [6]) Manifested in Distributed and Agile Projects

De-motivators

Tr
ig

ge
re

d
by

di

st
ri

bu
tio

n

So
lv

ed
 in

 A
gi

le

Inequity 

Interesting work going to other parties 

Lack of promotion opportunities/ stagnation/ career plateau/ boring work/
poor job fit 

Poor communication  

Bad relationship with users and colleagues 

Poor working environment 

Poor cultural fit/ stereotyping/ role ambiguity 

Lack of influence/ not involved in decision making/ no voice  

24 Computer Science and Information Technologies

Although our study does not differentiate and systematically evaluate diverse
implementations of global projects, it raises an important question about the motivators
hindered and de-motivators triggered by geographic and temporal distribution. We
therefore conjure that a contemporary understanding of motivation in software projects
is required as more and more companies become distributed and utilize resources from
all around the world. Another contemporary aspect that is not well understood to date is
related to cultural diversity. In particular, one may wonder whether motivators and de-
motivators are equally strong across different countries. Thus, further empirical studies
into the phenomenon of motivation in distributed projects are important.

Having said that distributed software projects trigger a lot of de-motivating factors,
in this paper, we also aim at understanding how to solve these environmental flaws. One
source of inspiration for us has been agile projects. Even though agility and distribution
may seem as an incompatible mix [28], the team-centred approaches suggested by agile
methods are already evidenced in distributed environment [28, 29]. While previous
studies have solely focused on positive impacts of agile methods on team communication
and coordination experiences, we emphasize the necessity to address motivation as the
prime object of study.

In this study, we have explored the current understanding of motivation in traditional
software teams based on related studies to date. However, one of our goals is to
emphasize that it is fair to assume that environment including software projects changes
over time and existing studies could provide a limited explanatory power to understand
the motivation in, e.g., projects involving developers from all around the world. In
order to be successful, organizations should strive to understand how to motivate their
employees in actual project settings and keep an eye on the rapidly changing factors
influencing the motivation.

Our future research includes empirical evidences of the motivation of software
engineers in different types of distributed projects where software engineers with
different cultural backgrounds are involved. We are also planning to investigate what
we can learn from open-source projects in order to raise the team motivation in GSD.

6 Conclusions
Our observations suggest that many motivating factors are challenged and de-

motivating factors are inherent in the very nature of distributed projects, and thus we
argue that de-motivation among software engineers in such projects may be manifested
more often than in similar projects with co-located members. We trace the negative
effect on motivation to geographic and temporal distance and cultural diversity, and
claim that without explicit concern of motivation, global projects will ultimately fall
into the category of dissatisfactory for those involved.

Ramasubbu and Balan states that productivity and quality can be modelled as a
function of personnel-related factors and software methodology-related factors [29]. In
our investigation, we confirm that software methodology and also project environment
matters. We study two distinct approaches – distributed projects and agile projects –,
which are analysed in the aspect of motivational studies. We suggest that the equation

25Līva Šteinberga, Darja Šmite. Towards a Contemporary Understanding of Motivation ..

shall also include factors that influence motivators and de-motivators for software
engineers.

Further, we discuss the potential of agile approaches to solve the problems of de-
motivation in distributed projects and propose future research to focus on evaluating the
impact of agility on motivation. Future work also involves empirical investigation of
motivation in different types of culturally diverse distributed projects and investigation
of what we can learn from open-source projects in order to raise team motivation in
GSD.

Acknowledgements
This work has been supported by European Social Fund project
No. 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044.

References
 1.	 D. Šmite, C. Wohlin, T. Gorschek, and F. Robert, “Empirical evidence in global software engineering: a

systematic review,” Empirical Software Engineering, vol. 15, no. 1, p. 91, 2010.
 2.	 L. Layman, L. Williams, D. Damian, and H. Bures, “Essential communication practices for Extreme

Programming in a global software development team,” Information and Software Technology, vol. 48,
no. 9, p. 781, 2006.

 3.	 J. D. Herbsleb, “An empirical study of speed and communication in globally distributed software
development,” IEEE Transactions on Software Engineering, vol. 29, no. 6, p. 481, 2003.

 4.	 C. Ebert, “Optimizing supplier management in global software engineering,” in Proceedings of the
International Conference on Global Software Engineering, 2007.

 5.	 T. Hall, H. Sharp, S. Beecham, N. Baddoo, and H. Robinson, “What do we know about developer
motivation?,” Software, IEEE, vol. 25, no. 4, p. 92, 2008.

 6.	 S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp, “Motivation in software engineering: a
systematic literature review,” Information and Software Technology, vol. 50, no. 9-10, p. 860, 2008.

 7.	 A. Law and C. Raylene, “Effects of agile practices on social factors,” in Proceedings of the 2005 workshop
on Human and Social Factors of Software Engineering - HSSE 05, 2005, p. 1.

 8.	 G. Asproni, “Motivation, teamwork, and agile development,” Agile Times, IV (1), p. 8–15, 2004.
 9.	 B. L. Mak and H. Sockel, “A confirmatory factor analysis of IS employee motivation and retention,”

Information & Management, vol. 38, no. 5, pp. 265-276, 2001.
10.	 A. Piri, T. Niinimäki, and C. Lassenius, “Descriptive analysis of fear and distrust in early phases of GSD

projects,” presented at IEEE International Conference on Global Software Engineering, 2009.
11.	 D. Šmite and C. Gencel, “Why a CMMI level 5 company fails to meet the deadlines?,” Product-Focused

Software Process Improvement, p. 87–95, 2009.
12.	 D. Šmite, N. Moe, and R. Torkar, “Pitfalls in remote team coordination: lessons learned from a case

study,” Product-Focused Software Process Improvement, p. 345–359, 2008.
13.	 J. S. Olson and G. M. Olson, “Culture surprises in remote software development teams,” Queue, vol. 1,

no. 9, p. 52–59, 2003.
14.	 N. B. Moe and D. Šmite, “Understanding a lack of trust in global software teams: a multiple-case study,”

Software Process Improvement and Practice, vol. 13, no. 3, p. 217, 2008.
15.	 R. Prikladnicki, J. L. N. Audy, and F. Shull, “Patterns in effective distributed software development,”

Software, IEEE, vol. 27, no. 2, p. 12–15, 2010.
16.	 S. Islam, M. M. A. Joarder, and S. H. Houmb, “Goal and risk factors in offshore outsourced software

development from vendor’s viewpoint,” in Proceedings of IEEE International Conference on Global
Software Engineering, 2009, p. 347–352.

17.	 A. Piri, T. Niinimäki, and C. Lassenius, “Fear and distrust in global software engineering projects,”
Journal of Software Maintenance and Evolution: Research and Practice, 2010.

18.	 S. Jalali, C. Gencel, and D. Šmite, “Trust dynamics in global software engineering,” in Proceedings of

26 Computer Science and Information Technologies

the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and Measurement -
ESEM, Bolzano-Bozen, Italy, 2010.

19.	 H. Holmstrom, E. O. Conchuir, P. J. Ågerfalk, and B. Fitzgerald, “Global software development challenges:
a case study on temporal, geographical and socio-cultural distance,” IEEE International Conference on
Global Software Engineering, 2006.

20.	 D. Šmite and C. Wohlin, “Software product transfers: lessons learned from a case study,” IEEE
International Conference on Global Software Engineering, 2010.

21.	 S. A. Frangos, “Motivated humans for reliable software products,” Microprocessors and Microsystems,
vol. 21, no. 10, pp. 605-610, Apr. 1998.

22.	 S. Ramachandran and S. V. Rao, “An effort towards identifying occupational culture among information
systems professionals,” in Proceedings of the 2006 ACM SIGMIS CPR, Claremont, California, USA,
2006, p. 198.

23.	 M. F. Reid, M. W. Allen, C. K. Riemenschneider, and D. J. Armstrong, “Affective commitment in the
public sector,” in Proceedings of the 2006 ACM SIGMIS CPR, Claremont, California, USA, 2006,
p. 321.

24.	 G. Melnik and F. Maurer, “Comparative analysis of job satisfaction in agile and non-agile software
development teams,” Extreme Programming and Agile Processes in Software Engineering, p. 32–42,
2006.

25.	 S. L. Syed-Abdullah, J. Karn, M. Holcombe, T. Cowling, and G. Marian, “The positive affect of the XP
methodology,” in Extreme Programming and Agile Processes in Software Engineering, Sheffield, UK,
2005.

26.	 S. Beecham, H. Sharp, B. Nathan, T. Hall, and H. Robinson, “Does the XP environment meet the
motivational needs of the software developer? An empirical study,” in AGILE 2007, 2007, p. 37.

27.	 E. Whitworth and R. Biddle, “The social nature of agile teams,” in AGILE 2007, 2007, p. 26–36.
28.	 D. Šmite, N. B. Moe, and P. J. Ågerfalk, “Agility across time and space: making agile distributed

development a success,” Springer, Heidelberg, Germany, 2010.
29.	 N. Ramasubbu and R. K. Balan, “Globally distributed software development project performance: an

empirical analysis,” in Proceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on the foundations of software engineering - ESEC-
FSE 07, 2007, p. 125.

Renārs Liepiņš
lQuery: A Model Query and Transformation Library

Scientific Papers, University of Latvia, 2011. Vol. 770
Computer Science and Information Technologies	 27–45 P.

lQuery: A Model Query and Transformation Library

Renārs Liepiņš
Institute of Mathematics and Computer Science

University of Latvia, Raina boulevard 29
Riga, LV-1459, Latvia

renars.liepins@lumii.lv

Transformation languages make it easy to work with models, but they are bound to one particular
data store. That makes them hard to adopt in projects where data is stored in a different repository,
which hinders more widespread use of transformations. Instead of adopting a transformation
language to a new data store, we propose to build a query and transformation library for the
general-purpose language that is already used in the project. We demonstrate how it can be done
by implementing such a library for EMOF-like data store in a Lua scripting language.

Keywords: model transformations, model query.

1 Introduction
Model-driven engineering (MDE) has shown the usefulness of models and model

transformations in software development. Its advent has fostered development of
numerous languages specifically tailored for model transformations. Although these
languages have largely solved the problem of working with models, there are still
some problems that hinder wider use of transformations. The main difficulty is that
each transformation language works only with a specific repository, and can be easily
extended (if at all) only with a specific general purpose language. Consequently if we
want to use a transformation language with another data store we need to either import/
export our data to the data store that is supported by the transformation language or
we need to write a wrapper for our data store so that the transformation language can
work with it. This is problematic because the import/export approach can work only in
situations where the transformations can work in a batch mode. Writing a wrapper is even
worse because it requires detailed knowledge about the implementation of the desired
transformation language. Another problem with existing transformation languages
is extensibility, i.e. if we need some new primitive operation that the transformation
language does not have, then how to add it? In principle, there are a few options: we
can either extend the transformation language compiler or runtime ourselves, ask the
transformation language developers to do it for us, or find a workaround. Neither of

28 Computer Science and Information Technologies

these options is satisfactory: first two are too time-consuming, the last one would defeat
the purpose of using a domain specific language.

To avoid these problems, we propose an alternative approach: instead of adopting
an existing transformation language to the new data store, let us build a new query
and transformation library in the general-purpose language we are already using in
our project. We assume that the general-purpose language has lambda expressions. We
think that it is justified because most mainstream languages either already have lambda
expressions or will add them in the next major revision. Although, at first it may seem
that it is unfeasible to build a library with the same expressive power as a domain specific
language, it is actually quite doable using ideas from combinatorial parsing [1].

We will show how this can be done by developing a query library in the Lua
scripting language [2] for working with an EMOF-like [3] data store. We chose Lua
because it has first-class functions, C-like syntax, and very few core constructs, so it can
be easily explained and understood. And we chose an EMOF-like data store because
most transformation languages work with such data stores and that in turn makes it
easier to compare the library features and expressiveness with existing transformation
languages.

2 lQuery Library
The lQuery library is a set of functions for querying and modifying models stored in

a model repository. It is implemented in the Lua scripting language and has been used for
building meta-case tools as well as specific modeling tools in GRAF platform [4]. Before
going into details about lQuery we will first give a brief overview of the Lua scripting
language and the API of the model repository for which the library is implemented.

2.1 Brief Overview of Lua

Lua is dynamically typed scripting language, i.e. variables do not have types, but
each value carries its own type. Comments, in Lua, start with double hyphens (‘--’) and
run till the end of the line. In the following examples, we will use comments starting
with ‘-->’ to indicate the result of preceding code.

Lua has only a couple of primitive value types: nil, strings, numbers, booleans,
and functions. And there is only one data structure: an associative array, commonly
called table. The indices and values in a table can be any Lua value: strings, numbers,
booleans, functions, or other tables. Lua has a special syntax for creating tables: {}
creates an empty table, and {x=1, y=”a”} creates a table where index “x” has value
1 and index “y” has value “a”. There are two syntaxes for getting the value that is
associated to a given key in a table: t.y and t[“y”], the former is just a syntactic sugar
for the later:

t = {x=1, y=”a”}

print(t.x)	 --> 1

print(t[“y”])	 --> “a”

Lua has a standard set of control structures: if for conditions and for for iterations.
All control structures have an explicit terminator: end.

29Renārs Liepiņš. lQuery: A Model Query and Transformation Library

if a < 2 then

	 print(“a less than 2”)

else

	 print(“a greater than 2”)

end

t = {“a”, 100, true}

for i, v in ipairs(t) do

	 -- i is index, v is value, .. is concatenation operator

	 print(“the value of index ” .. i .. “ is “ .. v)

end

Functions in Lua are first-class values meaning that functions can be constructed at
runtime, assigned to variables, passed as arguments, and returned as results from other
functions. All functions in Lua are anonymous. The statement function (x) ...
end is a function constructor, just as {} is a table constructor. For example, to create a
function that adds one to its argument, we write:

add_one = function(n)

 return n + 1

 end

add_one(3) --> 4

Here, add_one is a variable to which we assign the constructed anonymous function.
Tables can also be used as objects. To make it more convenient, there is a special

syntax for calling methods: obj:foo(args). It gets the anonymous function stored at
key “foo” in the table obj and calls it passing the table itself as the first argument. In
this case, the table plays the role of self or this from other object oriented languages.

2.2 Overview of a Model Repository API

lQuery, like other model transformation languages, works on a model repository.
The repository can be divided into two parts (Fig. 1): the schema part (upper three
boxes) and the data part (lower three boxes). The data part is the actual part with which
lQuery works, and the schema part is like annotations that help to understand what each
data item means. The schema part consists of three things: classes, attributes, and links.
Classes are used to group objects together, and the super/sub relation between classes is
used to state that if an object belongs to a subclass then it also belongs to the superclass.
Attributes are used as keys for associating string values to objects. Links are used
for associating objects with other objects. The data part consists of: objects, attribute
values, and link assertions. Objects are the actual values that are stored in repository.
Each object has exactly one class. Attribute values are strings that are associated to some
object with a particular attribute. Each object can have at most one attribute value for
a particular attribute. Link assertions are a collection of objects that are associated to a

30 Computer Science and Information Technologies

particular object for a particular link. An example of a repository content is given in the
next chapter.

1
object

★ attr
outgoing ★

1..★ dom

incoming ★
1..★ range

class 1..★

incoming ★

outgoing ★

1 type 1 type 1 type

0..1 inv
Class

className : String {key}

Attr

attrName : String {key}

Link

linkName : String {key}

AttrValue

value : String

Object LinkAssert★

attrValue

1 source
1 target

★ ★ ★

0..1 super
★

sub

0..1 inv

Fig. 1 Model Repository Metamodel

Each schema entity has a unique string id, and there is an API function to get an
entity with a specific id. There are also functions to get all objects that belong to a
specific class, check whether an object belongs to a specific class, create an object,
delete an object, get the value of an object attribute, set the value of an object attribute,
get linked objects, add link between two objects, and delete link between two objects.
The repository API functions are listed in the Appendix 1.

Theoretically, these functions are sufficient to write any transformation, but the
resulting code would be very repetitive, i.e. some patterns would repeat again and again,
e.g. navigation through multiple link chains, or filtering by some condition. To make the
transformations more readable, the redundant parts need to be abstracted away. lQuery
functions help to do it.

2.3 Example Model

In Fig. 2 we can see a simple model and an instance diagram. We will use it
throughout the rest of the paper for demonstrating lQuery constructs. The model is on
the left side, it consists of two classes: Person and Animal. Person has name and age
attributes and associations to other persons that are his parents and children, and
an association to Animals that are his pets. On the right side we can see a couple of
instances of this model.

31Renārs Liepiņš. lQuery: A Model Query and Transformation Library

parent
*

child
*

pet *

owner 0..1

pet

owner

parent

child

parent

child

Person

name:String
age: Integer

Animal

age:Integer

John:Person

name = "John"
age = 31

dog:Animal

age = 2

Mary:Person

name = "Mary"
age = 32

Bill:Person

name = "Bill"
age = 7

Fig. 2 Example model and instances

Typical queries that we would like to make on this model are: get instances of
a particular class (e.g. all persons), get instances with a specific attribute value (e.g.
persons with name “John”), or get all pets of a person’s children. If we needed to
perform these queries using only the repository API, then the code would mostly contain
iterator constructs. For example, to get persons that are 42 years old, we would need to
write:

persons_with_age_42 = {} --empty table for storing
results

for i, o in ipairs(allObjects()) do --iterate over all
objects

 --check that object is a person and the value of age is
42

 if isKind(o, “Person”) and getAttrVal(o, “age”) == 42
then

 --insert person into results table

 insert(persons_with_age_42, o)

 end

end

It is far from readable, even for such a simple query, especially if we compare
it with path expressions from XPath language [5], where it would look something
like “.Person[@age=42]”. Our goal is to create a query language where selector
expressions would be as compact as that. One way to do it is to create a function that
receives an XPath-like selector string and returns the resulting object collection, but this

32 Computer Science and Information Technologies

approach is too limiting because there are common queries that cannot be adequately
represented as strings, e.g. getting objects with a link to a specific instance because in
our repositories an instance does not have an externally accessible id, so it cannot be
encoded in a string. That is way we will take another approach: we will define selector
functions, and function combinators, so that we can easily reference objects and object
collections by passing them as arguments to those functions. For the common cases,
where string expressions would suffice, we will define an XPath-like selector shorthand
notation (string expressions) that can be easily mixed with selector functions and
combinators. The result will be the lQuery library.

2.4 lQuery Core

The core of lQuery is a single function: query. It has two arguments: an ordered
collection of repository objects and a selector. The selector specifies what will be the
result of the query operation on the source collection. There are two types of selectors:
filters and navigators. Filters are used to return a subset of the initial collection based on
some condition. Navigators are used to get a new ordered collection of objects from the
initial collection. Examples of filter selectors are: filter by class membership, or filter by
attribute value. Examples of navigation selectors are: getting the collection of objects
that are reachable from current collection by a given role name, or getting the collection
of values of some attribute. For each of these primitive selectors, there is a constructor
function that creates it. Constructor function names have been chosen to maximize
readability when used as arguments in query calls. The list of built-in primitive selector
constructors is given in Table 1. For example, to get all persons from Fig. 2 that are 42
years old we would write:

persons = query(allObjects(), kind(“Person”))

query(persons, hasAttrValue(“age”, 42))

Table 1

Primitive Selector Constructors

Selector Constructor Description

kind(className) returns a filter selector that will match only
those elements that are instances of a class with
id className or instances of some class in its
subclass chain

hasAttrValue(attrName, attrValue) returns a filter selector that will match only
those objects that have an attribute with id
attrName whose value is equal to attrValue

linked(roleName) returns a navigator selector that will match all
those objects that are reachable by a link with
id roleName

attrValue(attrName) returns a navigator selector that will return
a collection of values that are associated to
attribute with id attrName

33Renārs Liepiņš. lQuery: A Model Query and Transformation Library

It is much more concise than the same query written using the base repository API
and an explicit for loop (see previous chapter). But there are still some problems, e.g.
we needed to introduce a temporary variable: persons, and we have to call the query
function twice. It would be better if we could combine the two query steps into one then
we do not have to introduce a temporary variable, and we can call the query function
only once.

Another problem is how to perform filters on more complex conditions. Currently,
there are only two primitive filters: filter by kind, and filter by attribute value. If we need
to make a more complex query, e.g. select persons that have at least one child, we have
to resort to an explicit iterator.

parents = {}

for p in query(allObjects(), kind(“Person”)) do

 children = query(p, linked(“child”))

 if #children > 0 then

 parents:insert(p)

 end

end

In the next chapter we will look at selector combinators that will address these
problems.

2.5 Selector Combinators

In the previous chapter, we introduced the query function and some primitive
selectors for filtering and navigation object collections, but they were not powerful
enough to cover many typical use-cases. To solve those problems, we will introduce
functions (selector combinators) for building new selectors from existing ones. They
will receive selectors as arguments and return a new selector that can be used elsewhere
as if it was a primitive. Let us look at a couple of selector combinators in more detail
(the complete list of selector combinators is shown in Table 2).

One of the most frequently used selector combinators is chain. It receives any
number of selectors as arguments, and returns a new selector that when evaluated in a
query function will apply the first selector to the initial collection, then pass the result
of that evaluation to the next selector and so on through all the selectors that where
passed to it. Thanks to it, we can write long selector expressions in a very readable way,
because we do not need to manually call query functions and pass them arguments. For
example, to get all persons and then to get all animals that are pets of those persons, we
can write:

query(allObjects(), chain(kind(“Person”), linked(“pet”))

Another frequently needed task is filtering not just by a predefined selector (like
filter by kind, or filter by attribute value), but by a result of another selector. For this
task, there are two selector combinators: has and hasNot. Selector combinator has
accepts a selector as an argument and creates a filter selector, that when applied to
collection of repository objects will return a new collection with only those objects
for which the passed selector returns a non-empty collection. The selector combinator

34 Computer Science and Information Technologies

hasNot works similarly, but returns the objects for which the passed selector returns an
empty collection. For example, to select persons that have children

query(allObjects(), chain(kind(“Person”),

 has(linked(“child”)))

Another pair of selector combinators is union and intersect. Both receive
one or more selectors and return a new selector. In the case of union, the returned
selector returns a union of object collections (multi set) of all the results of applying
each selector to the initial collection. The intersect selector returns an intersection of
object collection that are returned by all of the passed selectors. For example, let us say
a person is responsible for someone, if that someone is either its child, or its pet. To get
all persons that are responsible for someone we would use a filter and union:

query(allObjects(), chain(kind(“Person”),

 has(union(linked(“child”),

 linked(“pet”))))

The selector combinators chain and intersect can be interchanged in some
situations, but in general they are different. When combining selectors with chain,
each selector will be performed on the result of the previous selector, but when they are
combined with intersect then all selectors are performed on the original collection
and only then the results are intersected. When all the selectors are filters, chain and
intersect can be interchanged and chain is actually the preferred, because it will be
more efficient, i.e. every subsequent selector will be applied to a smaller collection of
objects. But they will return a completely different result, if some of the selectors are
navigators, because then the intersect will perform each selector in the context of
source collection, but the chain will navigate through the chain of links. For example,
intersect(linked(“children”), linked(“pet”)) will return objects that are
children and pets at the same time, while

chain(linked(“children”), linked(“pets”)) will return children’s pets.
The final combinator is closure. It receives one selector and returns a new selector

that when applied to a repository object collection will return a new collection with all
the objects from the initial collection together with objects that can be found by repeated
application of the passed selector to the resulting collection until no new objects are
found. It is impossible to go into an infinite loop, because closure will notice cycles
and will not evaluate the passed selector on them again. A typical example for closure
is to get all descendants of a person (here we assume that each person is a descendant
of himself, in the next section we will see how to implement a combinator closure_plus
that will not have this problem). The closure will first find all person’s children, then
find all his children’s children, and so on, until no more children can be found. It can be
written as follows, assuming that p is a collection of persons for whom we want to find
all descendants:

query(p, chain(kind(“Person”),

 closure(linked(“child”)))

Combinator closure can be used not only with simple selectors like linked, but
also with more complex selectors: like chain of links, or links followed by filters. For

35Renārs Liepiņš. lQuery: A Model Query and Transformation Library

example, if the class Person had an attribute gender, then we could create a selector
for getting only male descendants by writing:

closure(chain(linked(“child”),

 hasAttrValue(“gender”, “Male”)))

Table 2

Selector Combinators

Selector Combinators Description
chain(sel1, sel2, ..., selN) creates a selector that applies each of the

supplied selectors in order, first selector gets
applied to the initial collection, and each
subsequent selector is applied to the result of
the previous selector

has(sel) creates a selector that filters initial collection
based on the result of supplied selector: if the
result is a non-empty collection or a non-false
value, then the object will be in the result
collection, otherwise it will be dropped

hasNot(sel) creates a selector that returns the complement
of the one has selector would have returned

union(sel1, sel2, ..., selN) creates a selector that returns a union of all
supplied selector results

intersect(sel1, sel2, ..., selN) creates a selector that returns an intersection
of all the selector results

closure(sel) returns a transitive closure of repeatedly
applying the selector to the initial collection
and then to each of results until no new object
is added (checks for cycles and is not applied
repeatedly if an object is found multiple
times)

2.6 Selector Reuse and Custom Selector Combinators

When building any reasonably complex application, there usually are some selector
patterns that repeat again and again, e.g. the compound selector from previous chapter
for getting persons that are responsible for someone, i.e. that have a child or a pet. One
way to avoid the repetition is to create this selector once and assign it to a variable.
Later, when we need to use that selector, we can pass the variable instead of building it
from scratch, like this:

responsible_persons = chain(kind(“Person”),

 has(union(linked(“child”),

 linked(“pet”)))

query(allObjects(), responsible_persons)

36 Computer Science and Information Technologies

This works if the pattern is constant, but what if the pattern is like a template? For
example, we could want to get all objects that are reachable though a selector chain with
length at least one. We can use functions to create these selectors for us. In a way, the
selector combinators from previous chapter did just that. For example, to define a new
selector combinator (closure_plus) that will receive a navigation selector and return
a new selector that will match all objects that are reachable through a navigation chain
with length at least 1, we write:

function closure_plus(selector)

 return chain(selector, closure(selector))

end

Now we can use this new selector combinator just as if it was a library primitive.
In real life tasks, this allows the programmer to build a task-specific selector library on
top of the primitive selectors and selector combinators that is tailored for his problem
domain.

2.7 Custom Primitive Selectors

Although the ability to create higher-level selector combinators is very powerful, it
is not enough, because we are still bound by the primitives that came with the library.
There are situations when we need a genuinely new kind of selector that cannot be
expressed with the existing primitives, e.g. get all persons from Fig. 2 whose name starts
with a letter ‘B’. Of course, we can always resort to explicit for loops, but the downside
of this approach is that we cannot use them in our selector chains, i.e. we will have to
split our chains in parts: till the for loop, and after it. The situation is even worse if we
want to use that selection in the closure combinator, because there is no way to do it,
and we would be forced to re-implement closure specifically for this case. To alleviate
these problems, there is a mechanism for constructing new primitive selectors. In fact,
all of the primitive selectors have been implemented through it.

There are two primitive selector constructor functions (Table 3). First operates in
the context of one repository object, like primitive selectors returned by linked and
kind constructors. The second operates in the context of repository object collection.
The closure selector is implemented through it.

New selectors with single object context can be created with a function
soloSelector that accepts a one-argument function as an argument (remember that
functions are first-class objects in Lua, and can be passed as arguments—see section
2.1). When the resulting selector will be used in a query invocation, it will apply the
passed function to each element from the initial object collection. It is expected that the
function will return either a repository object, an object collection, or a boolean. If it
returns an object or a collection, then all results are collected in a list that is flattened
afterwards. If the functions returns a boolean, then it acts as a filter, i.e. only those
objects for which it returned true are included in the result collection.

For example, if we were working with the repository that is shown Fig. 2 and needed
to get all persons who have underage children, then we would have a problem, because

37Renārs Liepiņš. lQuery: A Model Query and Transformation Library

there is no selector for checking if an attribute value is less than a given integer, and
would have to introduce an explicit for loop. But now we can construct a selector and
use it with other combinators:

underage = soloSelector(function(p)

 age = getAttrValue(p, “age”)

 if age < 18 then

 return true

 else

 return false

 end

 end)

query(allObjects(), chain(kind(“Person”),

 has(chain(linked(“child”),

 underage)))

Actually, all of the primitive selectors are implemented through soloSelector.
For example, the primitive selector kind(className) is implemented like this:

function kind(className)

 return soloSelector(function(o)

 return isKindOf(o, className)

 end)

end

The second primitive selector constructor creates a selector from a one-argument
function that will work on all of the initial collection at once, thus its only argument will
be the initial object collection. The result of the passed function on the initial collection
is the result of the whole selector. This selector constructor is useful for creating custom
selectors that must have the whole object collection, e.g. getting the first object from
a collection, getting the number of objects in a collection, or checking if an object
collection contains a specific object. For example, to get the first child of every person
we would first define a new primitive selector first (it is universal and can be used in
other situations) and then use it to get the first child:

first = collSelector(function(coll)

 return coll[1] -- table value by index

 end)

query(allObjects(), chain(kind(“Person”),

 chain(linked(“child”),

 first))

38 Computer Science and Information Technologies

Table 3

Custom Primitive Selector Constructors

Custom Selector Constructors Description

soloSelector(fn) creates a selector from a one-argument function;
when the selector is used, the function will be
applied to each element in the collection; if it
returns an object or an object collection, then
all the results will be collected and flattened; if
it returns a boolean then it will act as a filter

collSelector(fn) creates a selector from a one-argument function,
in contrast to soloSelector, the whole object
collection is passed to the function; the result
of the function is the result of the selector

2.8 Shorthand Notation

The primitive selectors and selector combinators allow us to write complex query
expressions in a modular and readable way, but in cases where the selector is constant
and simple, the combinator approach is a bit longer than the analogous expressions in
OCL [6] or XPath. To reach the maximum compactness and readability, we introduce
a shorthand string notation for most common primitive selectors and combinators.
The string form can be used anywhere in place of a selector: when the query function
gets a string in place of a selector it will compile it to the corresponding primitive
selector constructor or selector combinator calls. This allows us to mix the shorthand
string notation together with ordinary selectors to achieve maximum compactness
and expressiveness. Currently, there is no way to introduce shorthand notation for
custom defined selectors and selector combinators, except for redefining the compile
function.

The shorthand notation is adapted from the XPath navigation language. Function
compile(shorthand_string) compiles a shorthand string into the corresponding
selectors. It works as follows: string that starts with a dot followed by an alphanumeric
string, e.g. “.ClassName”, is compiled to the selector constructor kind(“ClassName”),
string that starts with a slash, e.g. “/roleName”, is compiled to linked(“roleName”),
and string that starts with brackets followed by ‘@’ and a name, e.g. “[@attrName =
value]”, is compiled to hasAttrValue(“attrName”, “value”). The shorthand
notation for selector combinators is as follows: “:has(sel)” is compiled to selector
combinator has(compile(“sel”)). The complete list of shorthand notation is given
in Table 4.

39Renārs Liepiņš. lQuery: A Model Query and Transformation Library

Table 4

Selector Shorthand Notation

Shorthand Notation Equivalent Form

“.ClassName” kind(“ClassName”)

“/roleName” linked(“roleName”)

“[@attrName = value]” hasAttrValue(“attrName”, “value”)

“:has(sel)” has(compile(“sel”))

“sel1 sel2 ... selN” chain(compile(“sel1”), compile(“sel2”), ..., 	
 compile(“selN”))

“sel1, sel2, ..., selN” union(compile(“sel1”), compile(“sel2”), ..., 	
 compile(“selN”))

Let us look at how some of the examples from previous chapters can be rewritten
using the shorthand notation. The very first example was, get all persons that are 42
years old. Using shorthand notation we can write:

query(allObjects(), “.Person[@age=42]”)

The shorthand notation can also be used in selector combinators. For example to get
the descendants of person collection p, we write:

query(p, closure(“/child”))

In that way, we can use the shorthand where possible, but fall back to selector
combinators or custom selectors when the shorthand is not expressive enough.

2.9 Manipulation with Whole Sets of Objects

Selection of repository objects is only one part of the model interpretation task. The
other, is actually doing something with the selected objects. Usually, the doing and the
selection is intertwined, i.e. we select some objects, do something with them, and then
use that collection to find next set of objects and do something with them. Because the
repository API has functions only for manipulating one object at a time, we would have to
use explicit iterators for manipulation and it would break up the selection-manipulation-
selection chain into multiple statements that in turn would hinder readability. To avoid
this problem, we define a number of methods for repository object collection that will
allow us to manipulate sets of objects at once and intermix selection and manipulation
steps. The list of methods is given in Table 5. We use the Lua object notation, where ‘:’
is used for method invocation (see section 2.1 for details). Let us look at each method
in more detail.

There are three manipulation methods: setFeatures, deleteLinks, and delete.
Method setFeatures receives a Lua table as an argument. Each key in the table is a
feature (attribute or link) name and the corresponding value is either a string for an
attribute value, or an object or a object collection for a link value. The method adds the
given features to each object in the source collection. In case of an attribute value, the

40 Computer Science and Information Technologies

current value is replaced with the given value. In case of a link, new link assertion is
created for the given object, or for each object in the object collection. For example, to
set the attribute “age” of all persons from Fig. 2 to 18 and add a link “pets” to some
object p, we would write:

p = createObject(“Animal”) -- create a new animal

query(allObjects(), “.Person”)

 :setFeatures({

 age = 18,

 pets = p

 })

Method deleteLinks receives a Lua table as an argument, where each key is a
link name and the corresponding value is either a single repository object or a repository
object collection. The method deletes link assertions that correspond to the given key
from each object in source collection to the corresponding key value. If there are no link
assertions, then nothing is done. The result of this method call is the same collection on
which it was called, so that further selection or modification operations can be done. For
example, to delete the link “child” from all persons in Fig. 2 to persons whose name is
“Bill”, we would write:

persons_with_name_bill = query(allObjects(),

 “.Person[@name = Bill]”)

query(allObjects(), “.Person”)

 :deleteLinks({

 child = persons_with_name_bill

 })

Method delete removes all objects that are in the source collection from the
repository and returns an empty collection.

There is also a higher-order method each(fn, args), i.e. a method that receives
a function as an argument. It can be used to call some function on each object from the
source collection for its side-effects, like making some changes in repository. The result
of the method each is the same collection on which it was called. This allows us to
make multiple such calls one after another. The supplied function fn will be called on
each object in the source collection: its first argument will be the current object, and the
rest arguments will be args, which where passed to the method each. For example, if
we have defined a function for incrementing the attribute age by a given number, then
we can make every person two years older as follows:

function increment_age (person, n)

 current_age = getAttrValue(person, “age”)

 setAttrValue(person, “age”, current_age + n)

end

query(allObjects(), “.Person”):each(increment_age, 2)

41Renārs Liepiņš. lQuery: A Model Query and Transformation Library

To allow mixing manipulation and selection steps, there is a method find(selector)
that returns the result of the function query on the given collection and selector, i.e.
p:find(sel) is equivalent to query(p, sel). In addition the method creates a selection
stack, so that each collection that is a result of the find method remembers from which
collection it was derived. This information is used by a method back, to return the
collection from which the current collection was derived. These two methods together
with manipulation methods provide a very readable way to write tree-like visitors. To
see these methods in action, let us consider a somewhat contrived example: we want to
find all persons in Fig. 2, then increment the age of their children by one year and the age
of their children‘s pets by two years, then we want to go back to the children and find a
child with the name “Bill” ,rename him to “Bob”, and delete his pets. To perform these
actions, in the given order, we would write:

allObjects()

 :find(“.Person”)

 :find(“/child”)

 :each(increment_age, 1)

 :find(“/pet”)

 :each(increment_age, 2)

 :back()

 :find(“[@name = Bill]”)

 :setFeatures({name = “Bob”})

 :find(“/pet”)

 :delete()

Note that allObjects() returns an object collection, so we can use the method
find on it. We use indentation to make the traversal more readable, i.e. after each find
we increase the indentation to signify that we have a new object collection, after each
back call we decrease the indentation to signal that we have returned to the previous
collection. Also note that the result of methods each and setFeatures is the same
collection they were called on (this style of methods is inspired by fluent interface
approach to API design).

Although all of the previous examples used the shorthand selector notation in the
find method, it is by no means the standard situation. In real life tasks, we would use
custom selector combinators or predefined patterns, because in any complex task we
would have built a domain specific selector language on top of the primitives.

42 Computer Science and Information Technologies

Table 5

Object Collection Methods

Object Collection Method Description

coll:find(selector) returns a new object collection that is the
result of applying query function to coll and
selector

coll:back() returns the collection from which the coll
was derived

coll:setFeatures(feature_table) feature_table is a table where each key
corresponds to a feature name and each
value corresponds to the new value of the
feature; this method sets these values for
each object in coll and returns the same
collection coll

coll:deleteLinks(feature_table) feature_table is a table where each key
corresponds to a link name and value
corresponds to the objects to whom the link
must be deleted; the method deletes those
links and returns the same collection coll

coll:delete() deletes all objects that are in coll from
repository, and returns an empty collection

coll:each(fn, args) for each object in coll a function fn is called;
first argument is the current object and the
rest arguments are args; returns the same
collection coll

3 Related Work
As far as we know, there are no libraries built specifically for model interpretation,

i.e. optimized for selecting object collections, traversing them and making minor
modifications, so we will compare lQuery to transformation languages, specifically the
path expressions that are used in transformation languages, and to EMF Model Query
library [7].

Transformation languages, as the name suggests, are optimized for matching patterns
in source model and creating corresponding patterns in target model. Because navigation
is not the most important problem in those tasks, transformation languages have either
only one-step navigations through role names [8], or navigation expressions that have
been inspired by OCL, like in languages ATL [9] and QVT [10]. But none of these

43Renārs Liepiņš. lQuery: A Model Query and Transformation Library

languages treat navigation expressions as first-class values, and thus it is impossible to
build or change navigation expressions at runtime, or pass them as arguments to other
functions. This makes them less usable in situations where the task at hand requires a
construct that the language designers did not anticipate. For example, if lQuery did not
have the closure combinator built-in as a primitive, it would be possible to add it as
a user defined function, and later use it just as if it was a language primitive. Also, this
ability allows a programmer to define a new higher-level selector language that will be
tailored for his domain and thus abstract away from the specific details of the metamodel
structure. This has two advantages: firstly, the code becomes more readable because the
selectors are tailored for the problem, and secondly, if the structure of the metamodel
changes, we only need to update our domain-specific selectors but all the logic can
remain the same, because it is built on top of custom selectors.

EMF Model Query is a model query library that is part of Eclipse Modeling
Framework [11]. It treats selectors as objects and can build them at runtime. But the
resulting queries are in the style of SQL, i.e. select-from-where, where from and
where clauses accept a structure that is similar to a lQuery selector. However, we think
that XPath-like navigation paths, where navigation and filtering can be intermixed, are
more readable.

4 Conclusions
We have shown how to build a query and transformation library for an EMOF-like

data store in the Lua language. The library has just as readable selector expressions
as transformation languages and in addition it can be easily extended with custom
selectors using the full power of the host language. Also, the new custom selectors are
indistinguishable from the ones that came with the library. In addition, the whole library,
including the parser for shorthand notation, took less than 1000 lines of Lua code to
implement. It shows that the library can be easily ported and that the amount of work
could be comparable to writing a wrapper for an existing transformation language to
work on a new repository.

Although the library is implemented in Lua, it could be just as easily ported to any
other language that has first-class functions. The same can be said about data store:
although the current library is implemented for an EMOF-like data store, it could be
similarly implemented for a different structure, e.g. XML. The only thing that would
change is the primitive selectors.

For the future work, we plan to explore how to make the compiler for shorthand
notation extendable, so that shorthand can also be added for custom selectors and
selector combinators.

Acknowledgements
This work has been supported by the European Social Fund within the project

«Support for Doctoral Studies at University of Latvia».

44 Computer Science and Information Technologies

References
 1.	 Hutton, G.: Higher-Order Functions for Parsing. In: Journal of functional programming, Cambridge Univ

Press (1992)
 2.	 Ierusalimschy, R.: Programming in Lua, second edition (2006)
 3.	 Meta Object Facility (Mof™) Core 2.0, http://www.omg.org/spec/MOF/2.0/, January 2006
 4.	 Sproģis, A., Liepiņš, R., Bārzdiņš, J., Čerāns, K., Kozlovičs, S., Lāce, L., Rencis, E., Zariņš, A.: GRAF:

a Graphical Tool Building Framework. In: ECMFA 2010 Tools and Consultancy track, France (2010)
 5.	 XML Path Language (XPath) Version 1.0, http://www.w3.org/TR/xpath/, November 1999
 6.	O bject Constraint Language (Ocl) 2.2, http://www.omg.org/spec/OCL/2.2, February 2010
 7.	 EMF Model Query Developer Guide, http://help.eclipse.org/helios/index.jsp?nav=/22, May 2011
 8.	 Kalnins, A., Barzdins, J., Celms., E.: Model Transformation Language MOLA. In: Proceedings of

MDAFA 2004, 14–28 (2004)
 9.	 Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: ATL: a QVT-like transformation language.

In: Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, New York, NY, USA (2006)

10.	 Meta Object Facility (MOF) 2.0 Query/View/Transformation, V1.1, http://www.omg.org/spec/QVT/1.1,
January 2011

11.	 EMF: Eclipse Modeling Framework, http://www.eclipse.org/emf/, May 2011

45Renārs Liepiņš. lQuery: A Model Query and Transformation Library

Appendix: Model Repository API

Object Collection Method Description

getEntity(entityId) returns the schema entity with the given id

allObjects() returns a list of all objects that are in the
repository

isKindOf(object, class) returns true if the object is a member of the
given class or a member of any class in the
class‘ subclass chain

createObject(class) returns a new object that is a member of the
given class

deleteObject(object) deletes the given object from the repository
together with all its attribute values and link
assertions

getAttrValue(object, attr) returns the attribute value string that is
connected to the given object and the given
attribute

setAttrValue(object, attr, value) replaces the string value of attribute value of
the given object

getLinkedObjects(object, link) returns a list of objects that are connected to
the given object through the given link

existsLink(src_obj, link, trg_obj) returns true if there exists the given link type
between the source object and the target
object

createLink(src_obj, link, trg_obj) creates a new link assertion between the
source object and the target object with
the given link type; if the link type has an
inverse, another link assertion is created in
the opposite direction

deleteLink(src_obj, link, trg_obj) deletes the link assertion that was between the
source object and the target object; if there
is an inverse link assertion in the opposite
direction, it is also deleted

Testing Computer Skills In Productive Environment:
Solution And Know-How

Andris Paikens, Zane Bicevska, Janis Bicevskis
Datorikas Instituts DIVI, Avotu 40-34, Riga, Latvia

Andris.Paikens@di.lv

The research discusses issues of training the computer skills and testing them in productive
environment. Based on outcomes of the research project, authors describe recommendable solution
for mastering office software applications skills and aspects of putting this solution into practice.
Main conclusions of the research are based on data acquired and analyzed during approbation of
solution in practice.

Keywords: digital literacy, testing of IT skills, eLearning.

1 Introduction
The eLearning initiative of the European Commission seeks to mobilize the

educational and cultural communities, as well as the economic and social players in
Europe, in order to speed up changes in the education and training systems for Europe’s
move to a knowledge-based society [1].

Modern, effective education and training systems are vital to everything from
economic competitiveness to social inclusion [2]. Information and communications
technologies (ICTs) are part of the answer, improving classical education and providing
flexible learning solutions to people throughout their life. Vivianne Reding, Member of
the European Commission responsible for Information Society and Media, announced:
“ICTs can help improve education, life-long learning and social inclusion” [3].

Widespread digital literacy, however, is vital. To participate and take advantage,
citizens must be digitally literate – equipped with the skills to benefit from and participate
in the Information Society. Today, almost all workers need to be able to use ICTs, so
training in using ICTs is both a key part of Europe’s inclusion strategy and essential
to reaping the benefits ICTs bring to education. The digital literacy includes both the
ability to use new ICT tools and the media literacy skills to handle the flood of images,
text and audiovisual content that constantly pour across the global networks.

Digital literacy is therefore one element in the i2010 Strategy’s emphasis on
Inclusion, better public services and quality of life. But this is not just about Inclusion –

Andris Paikens, Zane Bicevska, Janis Bicevskis
Testing Computer Skills In Productive ..

Scientific Papers, University of Latvia, 2011. Vol. 770
Computer Science and Information Technologies	 46–55 P.

47Andris Paikens, Zane Bicevska, Janis Bicevskis. Testing Computer Skills In Productive ..

ICT-related skills are vital for the competitiveness and innovation capability of the
European economy.

In order to ensure internationally recognized computer skills certification in Europe,
European Computer Driving Licence (ECDL) Foundation [4] was set up. ECDL provides
international certification of computer skills and issues European Computer Driving
License. ECDL Foundation’s certification programmes have been delivered to over 10
million people, in 41 languages, across 148 countries, through a network of over 24,000
test centres. The certification programmes are designed to be accessible to all citizens,
irrespective of age, gender, status, ability or race.

ECDL Foundation declares vendor neutrality [5]: “ECDL Foundation’s certification
programmes are vendor neutral. This means that our programmes are not tied to any one
brand of software and are designed to enable people to gain skills that can be used in
any appropriate software environment. This vendor neutrality gives people the freedom
and flexibility to complete the training and testing, and demonstrate skills in a range of
software applications.”

However, complete vendor neutrality in computer skills testing process can be
hardly observed. For instance, a project “Training in Computer and Internet Usage of
Unemployed in Latvia” [6] implemented within the framework of European Community
EQUAL by the Latvian Information and Communication Technologies Association
(LIKTA), a member of ECDL Foundation issuing ECDL licences in Latvia, included
training material „Basics for text processing”. This material as recommended training
material can be found on the Latvian ECDL certification homepage [7] includes Microsoft
text processing tool Word as the only example of text processing environment. The
situation remains the same in spreadsheet application training etc.

The open-source software products have an increasing market share in Europe
and worldwide. For instance, the European portal www.webmasterpro.de published
the results of its latest research [8] in February 2010. The study showed that in some
EU countries market share of OpenOffice products reaches almost 22% (Poland, Czech
Republic). In old EU member states, market share of OpenOffice products is: Germany –
21%, France – 19%.

This is another proof of increasing vendor neutrality in computer skills testing
demanding adaptation of solutions for computer skills training and ECDL certification
support tools to the changed market situation without causing unnecessary pressure and
costs.

The research focuses on the following issues:
•	 Automated testing of computer skills used in a particular software

environment;
•	 Applying the work assessment principles to the tests of computer skills;
•	 Testing the computer skills considering vendor neutrality principle.

2 Testing in Productive Environment
Bloom’s Taxonomy [9] divides educational objectives into three “domains”:

Affective, Psychomotor, and Cognitive, each having domain specific skills to be
developed.

48 Computer Science and Information Technologies

Skills in the affective domain describe the way people react emotionally and their
ability to feel another living thing’s pain or joy. Affective objectives typically target the
awareness and growth in attitudes, emotion, and feelings. Skills in the psychomotor
domain describe the ability to physically manipulate a tool or instrument like a hand
or a hammer. Psychomotor objectives usually focus on change and/or development in
behaviour and/or skills.

Traditional education tends to emphasize the skills in the cognitive domain. These
skills revolve around knowledge, comprehension, and critical thinking. There are six
levels in the taxonomy, moving through the lowest order processes to the highest:
knowledge, comprehension, application, analysis, synthesis, evaluation.

Thus, the knowledge is the very basic level of expressing skills – an exhibit memory
of previously-learned materials by recalling facts, terms, basic concepts and answers.
Developing skills at a higher level requires penetration, ability to analyze and evaluate
and ability to apply the acquired knowledge in practice.

Computer skills refer to the level of cognitive domain application at least, since
usage of a computer to the full extent is not possible without the ability to use specific
applications. The process of learning computer skills including training is not possible
without performing actions in certain environments. In such trainings, new knowledge
is added to the existing knowledge of student through accomplishing tasks in practice.

Unfortunately, most tests of computer skills still involve testing techniques
characteristic to the assessment of theoretical knowledge. Traditionally, it is organized
as a test or exam where students provide answers to test questions in a free or structured
or partly structured form. This approach, however, does not provide any significant
proof to students’ ability to use the particular environment. Moreover, this approach
induces assumption that computer skills are derived from knowledge about computer
skills that is generally not correct.

Testing of practical skills, on the other hand, shows student’s ability to work with
the particular application or in the particular environment where skills are learned.
Controlling of these skills, as a rule, is difficult to automate since this would imply
that testing software controls user’s actions in a productive environment. This approach
is called productive knowledge testing. Mostly recognized commercial product that
supports this approach is EnlightKS [10].

Testing of practical skills includes various techniques and methodologies, and often
combinations of them:

•	 Questions combined with images involves classic testing approach, however
possible answers to test questions contain graphical information close to
examples in real environment;

•	 Semi-practical tasks contain in advance prepared images of the environment
where skills are to be tested. Correctness of the answers is determined by
verifying relative or absolute position of computer mouse cursor in a given
image against pre-defined mouse cursor position of the correct answer. Task
images can be grouped or combined in series or presentations;

•	 Simulation of work environment is implemented by means of special software
visually resembling the environment where skills are to be tested but being
technically less sophisticated letting the user to perform limited set of actions

49Andris Paikens, Zane Bicevska, Janis Bicevskis. Testing Computer Skills In Productive ..

necessary to accomplish the task. Interactive videos are one of such possible
ways of work environment simulation;

•	 Verification of work results is performed in a productive environment where
specialised software solution verifies the result of performed actions against the
correct answer;

•	 Assessment of user’s actions is performed in a productive environment where
specialised solution continuously verifies user’s actions in order to determine
not only correctness of these actions but also sequence and way how these
actions were performed. Implementation of this approach requires very close
integration between the testing software and the environment where the test is
performed.

Verification of work results was considered as determinative testing methodology
within the given research and experimental development since:

•	 the technical implementation is not restricted by a single version of productive
environment – the test uses productive environment that is available on user’s
computer;

•	 the primary task of the test mechanism is to verify user’s ability to perform the
task, however, does not limit methodology or the way how the user reaches
results within the given environment (it is acceptable not to perform the task in
an optimal way);

•	 the automated verification of test results decreases the risk of human errors
present in manually processed test results.

3 Implementation
The solution was implemented within the framework of experimental development

applying findings of scientific research into practice. The developed prototype
was approbated for two office desktop application packages – Microsoft Office and
OpenOffice – mostly used Office software programs within the European Union.

The solution supports operations with different office desktop application packages,
thus extending application area of the project outcomes, at the same time increasing
complexity of technical aspects. Support is provided for OpenOffice version 3.2;
Microsoft Office receives support for versions 2000 to 2007. Significant aspect of the
project outcome – the solution supports also different operating systems such as MS
Windows XP, MS Windows Vista and MS Windows 7. Enabling support for operating
systems was one of the most sophisticated problems, mainly, due to different security
settings and other technical nuances.

3.1 Methodology

Implementation of solution is based on generalized automated testing methodology
design for universal application, respectively, independent from office software vendor.
Moreover, a self-evident request was the independence from different product versions
from the same vendor.

The main methodological task was to define a set of simple, measurable, separable
and autonomous units that would cover the area of testable knowledge and skills.

50 Computer Science and Information Technologies

Knowledge and skills were divided into smaller units. Each such unit includes a small
set of knowledge and skills that undergo no further detailing. Each of these units can be
used separately or in combination for testing and training purposes accordingly to the
difficulty level and knowledge area.

It was important that the standard specification for computer skills of an office
desktop application without specifying a particular product is already considered in the
design phase. Thus, the solution had to function equally well and independently from
the chosen application.

Such an approach complies with the requirement to provide a possibility to design
test tasks without taking interest in which environment tests will be performed. Students
would receive equivalent evaluation independently of the environment they took test in.

During the research process, several potential problems and ambiguously
interpretable opportunities were identified. These problems mainly comprised cases
when skills for different products or different product versions have to be tested by
different methods.

Purposely not restricting probable outcomes of the research each probable problem
situation was evaluated separately – eventually some of them were excluded from
test unit set, but, however, some were implemented. As a result, the developed testing
software provides more features to end users, though a partial responsibility for the
outcome lies on the person who defines the tasks. Within the development phase of
solutions, test units were described and developed. With the help of these test units, sets
of practical tasks for testing computer skills were defined. Each of these units comprises
logically simple tests, and each unit corresponds to a specific ECDL requirement, e.g., a
skill to apply a specific font to text or to change its colour or size.

3.2 Technical platform

Since office applications are usually made as desktop applications, the productive
testing environment should also have a form of a desktop application.

The development was performed in VisualBasic.Net for Windows environment.
Good compatibility with MS Office applications was a strong argument to choose this
development environment. However, this methodology can be successfully implemented
also with other application development tools.

Each of the test units was developed as a separate VisualBasic.Net function whose
tasks included test object and its properties to be checked. The system returns true, if the
property named by the argument exists and its value matches one defined as function’s
argument, and false, if there is no property or property value does not match the defined
desirable outcome. Specification, development and testing of such test units comprised
a very significant portion of project time resources.

Considering autonomic nature of each unit within the given implementation, unit
testing method was used to test software units. This method provides comprehensive
overview of status of completion and quality of developed skills evaluation units.

3.3 Architecture

Although the selected solution is not complex and it has homogeneous implementation
logic, the practical implementation involved several technically sophisticated issues.

51Andris Paikens, Zane Bicevska, Janis Bicevskis. Testing Computer Skills In Productive ..

Data gathering in format that would enable testing of unit logic presented the most
significant problem during implementation.

For instance, if logical test IsFont includes simple test or an element with a specific
font, then the implementation should include testing the object itself and accessing its
components and properties. In a particular case, if the test would imply a MS Word
document as a result, then in order to check fonts in a part of the document, the test
mechanism should know how to access this part of the document and its properties.

The above-described access to objects has been implemented by means of interpreter.
The interpreter has three interconnected components:

•	 Data model – a structure where processed document data are filled;
•	 Application interface – a subsystem providing data gathering and usage;
•	 Test units – the implementation of the logic of the test.
Architecture of the interpreter is shown in Figure 1.

Fig. 1 Architecture of interpreter

Data model provides a possibility to store information needed for testing logic of
units. Moreover, data structures are general by nature, namely, independent from source
and manner of use.

Data loading is organized via help of application programming interface (API)
classes. Initially, general classes were defined for description of general interface.
Further, significantly different API classes were implemented for specific applications
in MS Office and OpenOffice.

The component of test units derives values form the data model and executes the
test logic in units.

This kind of architecture enables complementing the API without significant
changes in data model and testing units in order to add support for other office software
products in the future.

52 Computer Science and Information Technologies

4 Implementation of Application Programming Interface
Due to specifically different applications, the development of application interface

was the most sophisticated part in the implementation of testing interpreter.
Implementations were different in both cases, MS Office and OpenOffice:
•	 Significant discrepancies in applications’ measurement units;
•	 Even within one program package such operations as program start and storage

of results were different in each application. For instance, Open Office regards
diagram saved in MS PowerPoint format as a picture. However, a diagram
created in OpenOffice is not recognized by MS PowerPoint at all;

•	 Different conception in other significant matters, for instance, MS Word
and OpenOffice Writer, have different algorithms for word counting in a
document.

Next chapters deal with comparative overview of technical implementation.

4.1 Processing methods for MS Office objects

For processing MS Office documents Microsoft recommends using Primary Interop
Assemblies [11].

A primary interop assembly is a unique, vendor-supplied assembly that contains
type definitions (as metadata) of types implemented with COM. There can be only one
primary interop assembly, which must be signed with a strong name by the publisher
of the COM type library. A single primary interop assembly can wrap more than one
version of the same type library.

A COM type library that is imported as an assembly and signed by someone other
than the publisher of the original type library cannot be a primary interop assembly.
Only the publisher of a type library can produce a true primary interop assembly, which
becomes the unit of official type definitions for interoperating with the underlying COM
types.

Publishers of COM components produce primary interop assemblies and distribute
them to developers for use in .NET Framework applications.

To use the features of a Microsoft Office application from an Office project, the
primary interop assembly (PIA) must be used for the application. The PIA enables
managed code to interact with a Microsoft Office application’s COM-based object
model [12].

4.2 Processing methods for OpenOffice objects

UNO Project provides processing of OpenOffice documents [13]. UNO stands for
Universal Network Objects. UNO is one of the accepted projects of OpenOffice.org.

UNO is the component model of OpenOffice.org. UNO offers interoperability
between programming languages, other component models and hardware architectures,
either in process or beyond process boundaries, in the Intranet as well as in the Internet.
UNO components may be implemented in and accessed from any programming language
for which a UNO implementation (AKA language binding) and an appropriate bridge
or adapter exists.

53Andris Paikens, Zane Bicevska, Janis Bicevskis. Testing Computer Skills In Productive ..

Fig. 2 OpenOffice possible usages using UNO project

4.3 Comparative evaluation

The implementation process contained a sophisticated challenge to overcome
differences among PIA and UNO in order to develop solution according to specification.
Moreover, most UNO documentation is written for Java programming language. Samples
for usage with other languages were scarce or there were hardly any.

Within last years, OpenOffice has brought in several changes in object structure by
extending UNO features, thus facilitating access to object information. However, these
changes caused ambiguity regarding the volume of available information, namely, the
documentation is not brought up-to-date and huge volume of available information still
refers to outdated interface versions, thus hindering the research efforts.

By using PIA, it is possible to auccess different object properties and data units
easily. However, PIA enables working with „com” [14] objects only; therefore, it does
not provide a possibility to review „com” object errors in problem cases.

UNO has a different framework, however its discrepancies with PIA due to complex
access to data details are only perplexing development. Moreover, in comparison to
PIA, in UNO, the data set requires additional processing efforts in order to obtain the
needed data. In the case of PIA, it was comparatively easy to obtain object’s properties
and process its values. In the case of UNO, additional efforts were required to both
identification of the needed property among others in the set and obtaining the needed
value form all available values of a property.

Some difficulties were caused by the necessity to use proper data objects in order to
access further properties. False objects did not have appropriate properties, but finding
the proper objects was hindered by the scarce and incomplete documentation.

5 Results and Conclusions
The ideas developed during the project implementation were transformed into

prototype, which was approbated for testing purposes of computer skills in office
software environments of two different vendors.

54 Computer Science and Information Technologies

During development phase, 140 units of skill testing were specified. Implementation
was accomplished for 120 such units. Due to various logical inconsistencies between
office software from two different vendors discovered during the prototype approbation
phase, an implementation of an interpreter (a practical implementation of the prototype
design) could not be done equally for different office software.

The results of the project are both ideological and technological by nature.
Benefits of automated testing of computer skills in productive environment are the

following:
•	 Optimized testing process of computer skills – significant reduction in time

needed for testing and gathering the results, significant reduction (in most cases
even total absence!) of evaluation errors. Unified and neutral attitude towards
every student is ensured;

•	 Complete identity between software product versions used in test and as a
working environment is endured – if the student is able to perform the action
within the skill testing environment, then it can be asserted that she/he will be
able to master these skills in a real working environment as well;

•	 Accumulated data base of computer skill testing – tasks, examples, good
practice – that can be used in long term period and provide good basis for the
improvement of teaching and training methodology;

•	 Automatically accumulated valuable statistics – valuable data on tests, test results
both on general and detailed level (e.g. dynamics of a student’s development)
can be obtained without significant efforts and additional resources;

•	 Computer skill testing materials (sets of tasks, etc.) can be used for training
purposes as long as solution can technically „replay” testing process step-by-
step.

However, a few restrictions and challenges for the use of solution exist:
•	 The leading software applications are subjects to permanent improvement.

Although the newest product versions are supposed to be compatible with the
previous ones, technical implementation of the newer versions can significantly
differ from the previous versions, thus causing necessity to continuously
maintain automated testing solution’s consistency with market development;

•	 In order to comply with the principle of vendor neutrality, testing the computer
skills would have to use only generalized and standardized cluster of features
characteristic to most environments, where skills are tested;

•	 Generally, every environment eligible for testing skills needs a technically
individual solution in order to automatically verify students’ test results against
correct answers.

Within the framework of this research project, the following objectives were
accomplished to a full extent:

1.	 Specification of testing skill units;
2.	 Development and prototypes of interpreters;
3.	 Testing the correct operation of a prototype during its testing phase;
4.	 Approbation and testing the end version of interpreter prototype.

55Andris Paikens, Zane Bicevska, Janis Bicevskis. Testing Computer Skills In Productive ..

6 Acknowledgement
The research is supported by the European Regional Development Fund (ERDF).

References
1.	 http://ec.europa.eu/education/archive/elearning/index_en.html
2.	 http://ec.europa.eu/information_society/tl/edutra/index_en.htm
3.	 Reding, V.: i2010: A new start for Lisbon and for European Information Society and Media policies. The

i2010 Conference, London, 6 September 2005
4.	 http://www.ecdl.org
5.	 http://www.ecdl.org/index.jsp?p=94&n=928
6.	 http://www.latvijapasaule.lv/
7.	 http://www.ecdl.lv
8.	 http://www.webmasterpro.de/portal/news/2010/02/05/international-openoffice-market-shares.html
9.	 Bloom, B., Englehart, M. D., Furst, E. J., Hill, W. H., Krathwohl D. : The Taxonomy of Educational

Objectives, The Classification of Educational Goals, Handbook I: Cognitive Domain, 1958
10.	 http://www.knowledgeuk.com/index.php/main/show/0/5/Home_Page
11.	 http://msdn.microsoft.com/en-us/library/aax7sdch.aspx
12.	 http://msdn.microsoft.com/en-us/library/15s06t57.aspx
13.	 http://udk.openoffice.org/
14.	 http://en.wikipedia.org/wiki/Component_Object_Model

File Transfer Protocol Performance Study for
EUMETSAT Meteorological Data Distribution

Leo Truksans, Edgars Znots, Guntis Barzdins
Institute of Mathematics and Computer Science

University of Latvia
leo.truksans@lu.lv, edgars.znots@lumii.lv, guntis.barzdins@lumii.lv

The described study provides the experimental results and their analysis for selection of the file
transfer protocol to be used in the upcoming Meteosat Third Generation Programme requiring
sustained dissemination data rate in the range of 300-400Mbps over heterogeneous networks.
This dissemination speed cannot be easily achieved with default TCP protocol settings and
file transfer applications with significant round trip time (RTT) and packet loss typical to large
heterogeneous networks. The designed test lab allowed finding the optimal TCP protocol and file
transfer application settings reaching the target data rate at 70ms RTT and 10-6 packet loss, typical
to terrestrial networks. Meanwhile, none of the surveyed applications were able to reach the target
data rate at 700ms RTT, typical to satellite distribution networks.

Keywords: computer networks, data dissemination, satellite communications.

1 Introduction
In January 2010, the European meteorological union (EUMETSAT) commissioned

IMCS to perform a detailed study on currently available open standards file transfer
protocols for TCP/IP networks. The purpose of the study was to provide the background
experimental material for the selection of a file transfer architecture in the upcoming
next generation Meteorological weather satellite system to be launched in 2014 –
EUMETSAT.

The results obtained in this study could be of interest to much wider audience, as
there are much ungrounded myths about the performance of underlying TCP protocol
and data transfer applications built on top of it. Under permission from EUMETSAT, in
this paper we provide a condensed version of the original technical report.

The purpose of the study was to perform a multi-dimensional survey of four
file transfer protocols (FTP, UFTP, bbFTP, GridFTP, RSYNC) under widely varying
conditions characteristic to various network conditions. Namely, performance 70ms
and 700ms RTT characteristic to intercontinental terrestrial Internet and geostationary

Leo Truksans, Edgars Znots, Guntis Barzdins
File Transfer Protocol Performance Study ..

Scientific Papers, University of Latvia, 2011. Vol. 770
Computer Science and Information Technologies	 56–67 P.

57Leo Truksans, Edgars Znots, Guntis Barzdins. File Transfer Protocol Performance Study ..

satellite communications were studied. Additionally, various packet loss patterns were
examined.

The measurements were conducted in controlled laboratory environment, which
was meticulously fine-tuned and validated to ensure that the lab setup itself could not be
the cause of negative artifacts during measurements. The lab itself was built from open-
source components rather than from closed commercial network emulators. This enabled
full tunability of the network simulator performance characteristics and parameters (e.g.
insertion of various packet loss patterns: random packet loss, packet loss in random
bursts, etc.) – we were not limited by the constraints of the given test platform.

2 Test Lab Description
As depicted in Fig. 1, a single test bed (two identical test bed sets were used during

this study) consisted of a file transfer server connected via LAN switch with one of the
clients and a network simulator. Second client was placed behind a network simulator.
Switch port connected to the server was mirrored and all traffic originated from or
sent to the file transfer server was copied to the traffic monitoring server. In case of
unicast file transfer scenarios, data was sent between the server and client behind the
network simulator. For multicast scenarios, data was sent from server to both clients. All
machines had at least dual 1GbE NICs, and each machine had a separate interface used
for management purposes only.

Fig. 1 Test lab topology

2.1 Hardware

All servers used within the test bed achieved or surpassed the necessary performance
levels to ensure that results obtained in the study were not biased due to performance
bottlenecks in equipment used.

58 Computer Science and Information Technologies

Network simulator had AMD Opteron 148, 2.2 GHz single core CPU, 2GB RAM,
dual Broadcom NetXtreme 1GbE network interfaces (BCM5704), 160GB SAMSUNG
HD160JJ WU100-33 HDD.

File transfer server, clients and traffic monitoring server had two AMD Opteron 275,
2.2 GHz, dual core CPUs, 8GB RAM, dual Broadcom Tigon3 1GbE network interfaces
(BCM95704A7), 80GB WDC WD800JD-00LSA0 HDD.

A small but capable HP ProCurve Switch 1800-8G was used for LAN
connectivity.

2.2 Software

Network simulator operating system was FreeBSD 8.0-RELEASE. Network
simulator software: ‚ipfw‘ and ‚dummynet‘ subsystems in the default system kernel.

File transfer server, clients and traffic monitoring server had Ubuntu Linux 8.04.4
LTS, 64-bit operating system. Usage of 64-bit kernel was essential for optimal memory
addressing and necessary for large TCP buffers. File transfer applications: ProFTPd
1.3.1, vsftpd 2.0.6, bbFTP 3.2, GridFTP 4.2.1, UFTP 2.10.3, RSYNC 2.6.9. Traffic
logging software: ‚tcpdump‘, default version provided with distribution.

2.3 Network tuning

After the default server installation, TCP parameters for all machines were tuned for
better TCP throughput.

The following system configuration variables were tuned in all Ubuntu servers in
accordance with best current practice [1]:

#Tuning Linux TCP settings
sysctl net.ipv4.tcp_window_scaling=1
sysctl net.ipv4.tcp_timestamps=1
sysctl net.ipv4.tcp_sack=1
sysctl net.ipv4.tcp_moderate_rcvbuf=1
sysctl net.ipv4.tcp_syncookies=0
sysctl net.ipv4.tcp_no_metrics_save=1
sysctl net.ipv4.tcp_ecn=1
sysctl net.ipv4.tcp_adv_win_scale=7

#Tuning Linux TCP buffers
sysctl net.core.rmem_max=16777216
sysctl net.core.wmem_max=16777216
sysctl net.ipv4.tcp_rmem=»4096 16000000 180000000»
sysctl net.ipv4.tcp_wmem=»4096 16000000 180000000»

#Tuning network interface parameters
ifconfig eth1 txqueuelen 10000

After initial server distribution installation on the network simulator, FreeBSD
kernel was recompiled to enable Dummynet network simulator functionality, as well
as to increase kernel time resolution to 40000Hz for more precise and consistent RTT

59Leo Truksans, Edgars Znots, Guntis Barzdins. File Transfer Protocol Performance Study ..

simulation. After kernel recompilation, both network interfaces were configured in
single virtual bridge, so that traffic was transparently passed through FreeBSD network
simulator between Ubuntu server and client machines on both interfaces.

2.4 Test bed validation

In order to validate test bed host capability to execute all test cases and produce
correct measurements for scenarios specified in the study, several baseline performance
measurements were performed. Initially, raw TCP and UDP throughput was measured
for test bed hosts connected in a back-to-back configuration. After initial measurements,
another set of test runs was performed with addition of switch between test bed hosts.
Also, baseline RTT measurements for back-to-back and switched cases were performed
for later comparison with test bed configuration accommodating network simulator.

Back-to-back, test bed hosts achieved raw TCP throughput of 941Mbps and raw
UDP throughput of 957Mbps. RTT of 73μs – 7.8ms (avg. 76μs) in a back-to-back
configuration was measured. The highest RTT was observed for the first packet, and
was caused by necessity to perform the ARP request. The standard deviation of 26μs
shows reasonably timed and predictable network interface operation.

Addition of a switch between test bed hosts did not have any significant effect on
achievable TCP/UDP throughput or RTT. Switched performance was exactly the same
as in case of back-to-back configuration – 941Mbps TCP and 957Mbps UDP. RTT was
a little lower – 61μs-103μs (avg. 66μs) with a low standard deviation of 11μs.

Rapid sending of 100,000 ICMP ECHO requests (further – ‚ping flood‘) was used
for measuring consistency of introduced RTT at network simulator. Iperf TCP and UDP
tests were carried out to measure raw TCP and UDP throughput. These tests were run
for one hour. RTT measurements were performed for first 100,000 ICMP ECHO (ping)
packets.

At no packet loss and no introduced delay the raw TCP and UDP performance was
again 941Mbps and 957Mbps, respectively. The RTT slightly increased to the range of
175-411μs (avg. 330μs) with a standard deviation of 44μs. These numbers demonstrated
network simulator performance as stable and low impact on packet flow [2].

Results from measurements of RTT consistency at pre-configured RTT of 70ms
and 700ms showed that maximum observed deviation from specified RTT was 1.9ms,
average deviation from specified RTT was 0.58ms at 70ms RTT and 1.2ms at 700ms
RTT. Since this falls well below 1% error margin relative to specified value, network
simulator RTT simulation could be considered as consistent.

3 Testing Methodology
To understand and demonstrate the practical limitations of selected applications

and protocols, a plan of test scenarios was created. The scenarios fall into six categories
as detailed in the Table 1: small unicast, medium unicast, large unicast, mixed unicast,
mixed multicast, large multicast. All the tests were run for one hour, except test 19
which was run for 5 hours. The 5th category used a mix of all file sizes with all RTT
variants but with only two packet loss rates (10-6, 10-3). The 6th category used just 2GB
large files and the worst packet loss (10-3).

60 Computer Science and Information Technologies

Table 1

All test scenarios

Scenarios Category: file sizes RTT Packet loss rate

1,2,3,4,5,6 Cat1: 10kB 1,2,3: 70ms
4,5,6: 700ms

1,4: 0
2,5: 10-6

3,6: 10-3

7,8,9,10,11,12 Cat2: 5MB 7,8,9: 70ms
10,11,12: 700ms

7,10: 0
8,11: 10-6

9,12: 10-3

13,14,15,16,17,18 Cat3: 2GB 13,14,15: 70ms
16,17,18: 700ms

13,16: 0
14,17: 10-6

15,18: 10-3

19,20 Cat4: mix of
10kB, 500kB, 5MB,
50MB, 2GB

19: 70ms
20: 700ms

0

21,22,23,24 Cat5: mix of
10kB, 500kB, 5MB,
50MB, 2GB

21,22: 70ms
23,24: 700ms

21,23: 10-6
22,24: 10-3

25,26 Cat6: 2GB 25: 70ms; 26: 700ms 10-3

During each test, the tcpdump utility on traffic monitoring server was used to
capture first 68 bytes of each packet. After each test, raw captured data was uploaded to a
separate system with large storage for off-line analysis. The analyses allowed to account
data packets separately from protocol control messages and was protocol specific. All
performance indicators in this study are for actual data without protocol overhead.

To better observe behavior of the protocols and applications, two histograms were
generated for each scenario:

•	 1st histogram: 5 second period for the 70ms RTT scenarios; 50 second period
for the 700ms RTT scenarios;

•	 2nd histogram: 15 minute period for all scenarios.
The reason why the first histogram represents the longer period of 700ms RTT

scenarios is that in most such scenarios little data throughput was observed during the
first 5 seconds. These seconds were mostly used for session initiation and negotiation.
It can be seen in the actual histograms that traffic pattern of 5 second period at 70ms
RTT was very similar to that of 50 second period at 700ms RTT, given other parameters
equal. This confirms earlier observations that TCP throughput is inversely proportional
to RTT [3].

Although all the tests were run for at least 1 hour, the 15 minute interval was
determined to demonstrate at least one full session, yet be short enough to distinguish
session cycles.

61Leo Truksans, Edgars Znots, Guntis Barzdins. File Transfer Protocol Performance Study ..

Graphs are drawn in logarithmic throughput scale to better illustrate performance
patterns in presence of highly disproportionate absolute values.

4 File Transfer Applications and Test Results
The following applications performance results were obtained based on data

gathered during this project. For every application, the impact of different file sizes and
packet drop rates at fixed RTT was demonstrated. We chose to base observations on
fixed RTT because from all the condition variables particularly RTT seemed outstanding
for two reasons:

•	 Both RTT values (70ms and 700ms) represent different real life usage scenarios.
The first is a representative RTT for a global terrestrial network. The second is
extremely high RTT appropriate for geostationary satellite communication;

•	 All the protocols and applications tested in this project demonstrated substantial
performance decrease in 700ms RTT link. The best case at this latency was
GridFTP in scenario 16 reaching throughput of about 38MBps (304Mbps).

4.1 70ms RTT

Fig. 2 shows seven FTP scenarios: 1, 2, 7, 8, 13, 14, 19. They represent all three
file sizes for 70ms RTT and 0 or 10-6 loss. The graphs have been grouped in 3 pairs –
each for a different file size. The performance differs dramatically: the large files (2GB)
are transferred at about 100MBps while small files (10kB) are transferred at about
20kBps. It can also be concluded that low or no packet loss does not impact the average
performance much due to Fast Retransmit [4]. Transfer of mixed file set in scenario 19
shows varying average performance as it increased during the transfer of larger files and
decreased during the transfer of small files.

Fig. 3 shows the same set of scenarios for GridFTP. Scenarios 13 and 14 show that
the full benefits of GridFTP protocol were achieved when transferring large files over
parallel streams.

Usage of multiple streams and TCP window scaling proved to be most advantageous
for medium and large files on links with no packet loss, since GridFTP has the
opportunity to accelerate and reuse each data connection. But, this same approach seems
to be less effective in presence of packet loss. The larger is the file transferred over a
TCP connection, the more likely is that some packets will be dropped for that file. Thus,
the longer a TCP connection is used on a lossy link, the more likely this connection
will experience degrading throughput over time due to several close packet drops that
cause decrease of TCP window. Hence, re-use of existing data connections in case of
high packet loss is undesirable. It is much more effective to use a connection only for a
lifetime of singe file transfer, and then reopen new connection with the highest possible
initial TCP window.

62 Computer Science and Information Technologies

Fig. 2 FTP protocol, little or no packet loss, 70ms RTT

Fig. 3 GridFTP protocol, little or no packet loss, 70ms RTT

This explains why throughput curves are almost identical for scenarios 8 and 14 –
because if the same data connection(s) are reused for the whole duration of file transfer
session, the TCP window in both cases will converge to the same size depending on

63Leo Truksans, Edgars Znots, Guntis Barzdins. File Transfer Protocol Performance Study ..

packet loss rate, and irrespective of whether medium or large files are being transferred.
As it can be seen, in case of high-throughput of large files packet loss rate is much more
important than RTT.

4.2 700ms RTT

Fig. 4 shows seven other scenarios for FTP: 4, 5, 10, 11, 16, 17, 20. They represent
all three file sizes for 700ms RTT and 0 or 10-6 loss. It can be easily seen that the
graphs are grouped in 3 pairs again – each for a different file size. The performance also
differs dramatically but the throughput is significantly lower. Rare packet loss impacted
average performance of the large file transfer in scenario 17. Occasional packet drops
close one to another made TCP to reduce window and drop performance in few of the
transfers. This is indicated by the “ladders” in the graph. Comparing Fig. 4 to the Fig.
2 (FTP, 70ms) an observation can be made that traffic patterns are “stretched” about 10
times as RTT becomes 10 times longer. At the same time, performance decrease was
about 10 times as the RTT was increased 10 times. As mentioned previously, it complies
with findings in [3].

Fig. 4 FTP protocol, little or no packet loss, 700ms RTT

Fig. 5 shows all three file sizes for 700ms RTT and 10-3 packet loss. At this packet
drop rate, large and medium file sizes show degraded performance while small files
show no difference. Larger RTT decreased performance even more. As a result, 2GB file
transfer at worst conditions was possible only at average throughput of 50kBps.

64 Computer Science and Information Technologies

Fig. 5 FTP protocol, high packet loss, 700ms RTT

As in case with 70ms RTT, also here performance with large files was slightly lower
than performance with medium files. The reason is the same – fast starting TCP could
transfer most 5MB files with few or no lost packets and did not need to decelerate [5].

5 Conclusions and Recommendations

5.1 Conclusions on application suitability

The criterion of application suitability in this study was the earlier defined target
performance. The target performance level was specified by the EUMETSAT as the
minimum throughput of 350Mbps (43,7MBps) for the next generation real time content
delivery.

5.2 FTP suitability

FTP protocol mandates a separate TCP connection for control session and a new TCP
connection for every data stream. A data stream is either a data file or a directory listing.
FTP commands get sent over single permanent control connection. Inefficiency of the
multiple file sending process can be clearly seen in the analyzed data and histograms
given earlier in this document. It took at least two round-trips to initiate a new file
download in the presence of an already open session. In case of 70ms RTT, it meant at
least 140ms lost in protocol “chat” for every file regardless of its size.
The analyses show that FTP reached target only in scenarios 13 and 14, which were
sending 2GB files at 70ms RTT and no or rare packet loss. None of the other FTP
scenarios reached target as a consequence of either smaller files, higher RTT, more
frequent packet loss, or a combination of these.

65Leo Truksans, Edgars Znots, Guntis Barzdins. File Transfer Protocol Performance Study ..

5.3 UFTP suitability

UFTP application spent at least 4 seconds for every session initiation in our tests.
The sender was always explicitly provided with IP addresses of both receivers. Session
initiation took even longer time in case of open client participation. UFTP had to start
a new session for every file it sends. As a result, UFTP application is unsuitable for
sending files of small or medium size. Those are even out of scope in a UFTP design and
performance study [6] that focuses only on large files.

UFTP reached target only in scenario 25, which was sending only large (2GB) files.
The other parameters were: 70ms RTT and high packet loss. One of the reasons why
this scenario was added to the test plan was to show at least one multicast scenario when
UFTP reaches target. None of the other UFTP scenarios (mixed file sizes) reached target
as a consequence of either smaller files, higher RTT, or a combination of both.

Scenario 25 shows another interesting point. UFTP does not suffer much from packet
drops. Its delivery process does not retransmit a lost packet immediately following a
NACK. Instead it continues to transmit file at the given rate (900Mbps in all tests) and
collects NACKs for the next phase. During a subsequent phase, it transmits only the
lost fragments at the same given rate. It repeats phases until every receiver has received
a complete file. Another welcome feature of UFTP phased delivery process is that any
receiver that has received a complete file finishes the session with the sender while other
receivers may continue with more phases in case of NACKs.

Scenario 25 was run in presence of worst packet loss. UFTP was the only application
that reached target at worst packet loss rate (10-3).

5.4 bbFTP suitability

Although bbFTP protocol allows sending large files over multiple parallel streams,
it has the same protocol limitations as standard FTP. bbFTP reopens data connections
for transfer of each subsequent file, thus it was not possible to send files of small or
medium size at a high throughput. Moreover, bbFTP uses fixed TCP window size, and
has several implementation restrictions on stable settings for the number of parallel
streams and TCP window sizes used. The usage of fixed TCP window size may have
advantages only in high packet loss scenarios. Even then, bbFTP was unable to achieve
high enough throughput.

bbFTP did not reach target throughput in any scenario, it performed worse than
even standard FTP in all scenarios except ones with packet loss ratio of 10-3. Best case
throughput for bbFTP – scenario 13: 36MBps (288Mbps).

Also, bbFTP was poorly implemented and crashed periodically during deployment,
configuration and execution of test scenarios. If properly implemented, ensuring more
stable and reliable operation, as well as allowing usage of more than ten parallel streams
and optimal performance with non-default TCP buffer parameters, bbFTP could possibly
be considered for use in large file transfer in high packet loss cases. But, considering
the state of bbFTP at the time of this study, it was more perspective to research on the
possibilities of achieving the same benefits of using fixed TCP windows during transfers
with high packet loss by tuning GridFTP operation specifically for high packet loss
scenarios.

bbFTP cannot be suggested based on the data gathered in this study.

66 Computer Science and Information Technologies

5.5 GridFTP suitability

GridFTP protocol opens permanent data connection(s) that can be reused to transfer
multiple files. This feature resembles protocols like RSYNC and clearly allows achieving
higher throughput with small files. For files large enough (bigger than what can be sent
within one TCP window), GridFTP was able to utilize parallel transfer of single file over
several streams – a feature common with bbFTP. However, we could not confirm how
scalable GridFTP was in capability to send multiple files simultaneously over the open
parallel connections, as it was outside the scope of this project.

Due to GridFTP capability to reuse open data connections, utilize TCP window
scaling provided by operating system, as well as parallel transfer of large files through
several streams, GridFTP is highly suited for medium and large file transfer on WAN
networks with no packet loss. But in case of packet loss on the network, GridFTP will
experience dramatically decreased throughput depending on packet loss rate, amount of
parallel streams used, and duration of file transfer session.
GridFTP reached target only in scenarios 7 and 13, which were sending 5MB and 2GB
files at best conditions (70ms RTT and no packet loss). None of the other GridFTP
scenarios reached target as a consequence of either smaller files, higher RTT, more
frequent packet loss, or a combination of these.

5.6 RSYNC suitability

RSYNC protocol opens single TCP connection for the duration of whole session.
This connection carries all the control commands and file data, including multiple
file transfer. Upon starting the session, RSYNC application compares the given local
directory with the given remote directory, calculates differences and only then starts
to send actual files. This initial comparison makes the average throughput of the tests
lower than the performance that can be observed during actual file transfer.

Still, single TCP connection process gives good results with all tested file sizes
in case of no severe packet loss. RSYNC reached target in scenarios 1 and 13, when
sending the smallest and the largest files (10kB and 2GB, respectively) at best conditions
(70ms RTT and no packet loss). RSYNC was the only application that reached target
with 10kB files. The other RSYNC tested scenarios (3, 15, 18) had worse conditions and
did not reach target. This limitation on achievable throughput at high RTT or packet loss
is common for all tested applications that rely on TCP window scaling provided by the
operating system (FTP, GridFTP, RSYNC).

5.7 Conclusions on Applications and Protocols

Exceptional results produced within the study:
•	 Highest performance – FTP scenario 13: 105MBps (840Mbps);
•	 For small files (10kB) only RSYNC reached target (scenario 1: 55MBps

(440Mbps));
•	 At worst packet loss (10-3) only UFTP reached target (scenario 25: 45MBps

(360Mbps));
•	 At 700ms RTT only GridFTP came close to target (best case – GridFTP in

scenario 16: 38MBps (304Mbps)).

67Leo Truksans, Edgars Znots, Guntis Barzdins. File Transfer Protocol Performance Study ..

Only FTP application could surpass 2x target mark (700Mbps, 87,5MBps) in
scenario 13. GridFTP and RSYNC were close to that mark in that scenario reaching
84MBps and 87MBps, respectively.

It can be concluded that four of the five applications tested have shown their
best performance at some specific scenarios. Any of them may be considered for use
depending on the anticipated file sizes and infrastructure or dissemination process
constraints. Only bbFTP was unable to reach target and can be excluded from further
consideration.

Several recommendations were given considering various possible assumptions
about the infrastructure. Summarizing all recommendations at different assumptions the
following general but not strict recommendation was made: use UFTP for multicast or
if packet loss is high, otherwise use RSYNC or tar+nc.

The tar+nc as a very simple recommendation emerged as an afterthought after the
detailed tests contracted by Eumetsat and that was described here. Tar+nc is a combination
of archiving tool ‚tar‘ and network session tool ‚nc‘. It packs together a given set of files
in a single network session. We believe the performance patterns of such solution to be
similar to rsync, but without the need to compare directories at session beginning. These
tools are present in any mature network operating system and have evolved to be very
powerful, yet simple and achieving same top throughput rates.

References
1.	 K. Sataki, B. Kaskina, G. Barzdins, E. Znots, M. Libins: BalticGrid-II project final report on Network

Resource Provisioning, 2010. URL: http://www.balticgrid.org/Deliverables/pdfs/BGII-DSA2-9-v1-2-
FinalReport-IMCSUL.pdf

2.	 M. Carbone, L. Rizzo: Dummynet Revisited, SIGCOMM CCR, Vol. 40, No. 2, April 2010.
3.	 Lee J., Cha H., Ha R.: A Two-Phase TCP Congestion Control for Reducing Bias over Heterogenous

Networks, In: Proceeding of Information networking: convergence in broadband and mobile networking :
international conference, ICOIN 2005, Jeju Island, Korea, January 31-February 2, 2005, LNCS Vol.3391,
Springer, 2005.

4.	 M. Allman, V. Paxson, W. Stevens, RFC 2581: TCP Congestion Control, April 1999.
5.	 M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. RFC 2018: TCP Selective Acknowledgment Options,

October 1996.
6.	 J. Zhang, R. D. McLeod: A UDP-Based File Transfer Protocol (UFTP) with Flow Control using a Rough

Set Approach, submitted to IEEE Transactions on Networking, 2002.

Alina Vasilieva, Taisia Mischenko-Slatenkova
Computing Relations in the Quantum Query ..

Scientific Papers, University of Latvia, 2011. Vol. 770
Computer Science and Information Technologies	 68–89 P.

Computing Relations in the Quantum Query Model 1

Alina Vasilieva, Taisia Mischenko-Slatenkova
Faculty of Computing, University of Latvia

Raina blvd. 29, LV-1459, Riga, Latvia
Alina.Vasiljeva@gmail.com, Taisia.Miscenko@gmail.com

Query algorithms are used to compute mathematical functions. Classical version of this model is
also known as decision trees. Quantum counterpart of decision trees – quantum query model – has
been actively studied in recent years. Typically, query model is used to compute Boolean functions.
In this paper, we consider computing mathematical relations instead of functions. A relation is a
set of ordered pairs and the difference from a function is that each element from a domain set may
be mapped to multiple elements from a range set. We demonstrate that quantum query model is
well suited for computing relations. We present examples of quantum query algorithms that are
more efficient than the best possible classical algorithms for computing specific relations.

Keywords: quantum computing, quantum query algorithm, algorithm complexity, mathematical
relation.

1 Introduction
Query model is a popular, elegant and rather simple model of computation. The

goal is to compute the value of a well-known function for an arbitrary hidden input. The
complexity of a query algorithm is measured by the number of questions it asks about
the input variables on the worst-case input. The classical version of this model is known
as decision trees [1].

Quantum computing is an alternative way of computation based on the laws of
quantum mechanics. Quantum algorithms can solve certain problems faster than classical
algorithms. The most exciting examples are Shor’s [2] and Grover’s algorithms [3].
This branch of computer science is developing rapidly; various computational models
exist and we consider one of them. Many impressive quantum query algorithms have
been developed in a query model in recent years [4-8]. An important task in complexity
theory is to find examples with a large gap between classical and quantum algorithm
complexity of the same computational problem.

	 1	 This work has been supported by the European Social Fund within the project „Support for Doctoral
Studies at University of Latvia”.

69Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query ..

Most often query model is used to compute Boolean functions. However, it is
possible to apply query model to functions with larger domain and range as well. In
this paper, we consider even more uncommon case – computing mathematical relations
instead of functions. A binary relation is more general type of problem than a function.
A relation is a set of ordered pairs that associates values from a domain set with values
from a range set. Difference from a function is in element mapping: each element from
a domain set may be mapped to multiple elements from a range set. So, a function is
simply a special case of a relation, where each value from a domain set is mapped to no
more than one value from a range set. Alternative way is to consider relations as multi-
valued functions.

The study of query complexity of relations has been inspired by the book on
communication complexity by Kushilevitz and Nisan [9]. The main part of this book
discusses communication complexity of functions, but Chapter 5 is devoted exactly to
the communication complexity of relations.

We apply traditional query model to compute relations. In classical deterministic
settings, however, it does not seem to be possible to employ the difference between a
relation and a function to obtain new interesting results. A deterministic decision tree
always follows one and the same fixed path for each certain input and outputs one and
the same value each time. The situation is different in the quantum case. Quantum state
before the measurement is in a superposition of the basis states, so it is not determined
to which exactly basis state quantum system collapses after the measurement.

Various computational problems may be represented in terms of relations. Let
us consider, for instance, an online reservation system for a large renting company.
Company provides various products for rent, for example, cars, flats, TV-sets etc. User
fills in a reservation form on the Web page and submits it. According to user’s request
parameters (relation input) system has to find a set of satisfying and available items
(value set for that input) and display them to user for further selection or even perform
selection automatically. By designing an efficient algorithm for computing this kind of
relation we are able to speed-up processing significantly. Nowadays, in heavy-loaded
systems with huge amount of concurrent requests, a lot of resources could be saved by
performance improvement at the moment of selecting appropriate value set.

Significant difficulty in designing quantum query algorithm is making it exact (i.e.
make it output correct result always with probability p = 1). The largest complexity
separation between classical deterministic and quantum exact query algorithm
complexity for the same total function known for today is N versus N/2. However, in the
case of relation, we are allowed to output values from a fixed set instead of one fixed
value for a certain input. We assert that in such case the task of designing a non-trivial
exact quantum query algorithm is achievable more easily. That could help to construct
examples, where number of queries required by quantum algorithm is more than two
times less than required by classical algorithm.

In this paper, we adapt the query model for computing relations. First, we give the
definitions related to mathematical relations. We define several types of query algorithms
that may compute relations in different manners. Then we demonstrate examples of
computing relations in classical and quantum query models, where quantum algorithm
achieves a speed-up comparing to classical algorithm. Finally, we discuss the prospects
of achieving good results in enlarging the complexity gap between classical and quantum
query complexity for relations.

70 Computer Science and Information Technologies

2 Preliminaries
This section contains definitions and provides theoretical background on the subject.

First, we define classical decision tree. Next, we provide a brief overview of the basics
of quantum computing. Finally, we describe the quantum query model.

2.1 Classical Decision Trees

The classical version of the query model is known as decision trees [1]. Definition
of Boolean function is known to everybody, but the input X = (xa, x2, ..., xn) is hidden
in a black box, and can be accessed by querying xi values. Algorithm must be able to
determine value of the function correctly for arbitrary input. Complexity of the algorithm
is measured by number of queries on the worst-case input. For more details, see the
survey by Buhrman and de Wolf [1].

Deterministic decision tree is a tree with internal nodes labeled with variables xi,
arrows exiting internal nodes labeled with possible variable values and leafs labeled
with function values. Deterministic decision tree always follows the same path for each
input and produces the correct result with probability p = 1. Deterministic complexity of
a function f is denoted by D(f).

Probabilistic (randomized) decision tree may contain internal nodes with
probabilistic branching, i.e., multiple arrows exiting from the same node, each one
labeled with a probability for algorithm to follow that way. The total probability to
obtain the result r after execution of an algorithm on certain input X equals to the sum of
probabilities for each leaf labeled with r to be reached. Total probability of an algorithm
to produce the correct result is the probability on the worst-case input.

2.2 Quantum Computing

We briefly outline basic notions of quantum computing here that are necessary to
define the quantum query model. For more details, see [5, 6, 10].

An n-dimensional quantum pure state is a unit vector in a Hilbert space. Let |0〉,|1〉,.,
|n-1〉 be an orthonormal basis for . Then, any state can be expressed as |ψ〉=

for some . The norm of |ψ〉 is 1, so we have . States |0〉,|1〉,…,|n-1〉

are called basis states. Any state of the form is called a superposition of
|0〉,…,|n-1〉. The coefficient ai is called the amplitude of |i〉.

The state of a system can be changed by applying unitary transformation. Unitary
transformation U is a linear transformation on that maps each vector of unit norm to
a vector of unit norm. The transpose of an m × n matrix A is the n × m matrix
for 1 ≤ i ≤ n, 1 ≤ j ≤ m. H denotes the Hadamard gate.

We use the simplest case of quantum measurement: the full measurement in the
computational basis. Performing this measurement on state |ψ〉=a0|0〉+…an-1|n-1〉
produces outcome i with probability |ai|

2. Measurement changes the state of the system
to |i〉 and destroys the original state.

71Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query ..

2.3 Quantum Query Model

The quantum query model is the quantum counterpart of the decision tree model
and is intended for computing Boolean functions. For a detailed description, see [4-6].

A quantum computation with T queries is a sequence of unitary transformations:

Ui‘s can be arbitrary unitary transformations that do not depend on input bits. Qi‘s
are query transformations. Computation starts in the initial state . Then we apply U0,
Q0,…, QT-1, UT and measure the final state.

We use the following definition of a query transformation: if the input is a state

ii
a iψ =∑ , then the output is:

()1 i
i ii

a iϕγ = −∑ , where φi ∈ {x1, ..., xN, 0,1}.

For each query, we may arbitrarily choose a variable assignment φi for each basis
state. If the value of the assigned variable φi ∈ {x1, ..., xN} is “1”, then the sign of the i-th
amplitude ai changes to the opposite.

Each quantum basis state corresponds to an algorithm‘s output. We assign a value
of the function to each output. The probability of obtaining the result j after executing
the algorithm on input X equals to the sum of squared modulus of all amplitudes that
correspond to outputs with value j.

Definition 1 [1]. A quantum query algorithm computes f exactly if the output equals
f(x) with probability p = 1, for all x ∈ {0,1}N. Complexity is QE(f).

3 Mathematical Relations
The main object which is studied in this paper is mathematical relations.
Definition 2 [11]. A relation R from a set A to a set B is a subset of Cartesian

product A × B – a collection of ordered pairs (a, b) with first components from the set A
(domain) and second components from the set B (range).

In other words, relation associates each value from the domain set with a subset
of values from the range set. We call each value from the domain set – an input
X = (x1, x2,…, xN). We call each xi – a variable. We call a set of associated values from
the range set – a result set for input X and denote it by R(X). We consider left-total
relations only, when the result set is not empty for each domain set element. Relation
can actually be considered a multi-valued function.

A function is a special case of relation and it uniquely associates each value from
the domain set with one value from the range set. Fig. 1 graphically demonstrates this
difference.

72 Computer Science and Information Technologies

Fig. 1. Example of a relation and a function

Various functions can be selected in such a way from a single relation. We denote by
Func(R) the set of all total functions that can be selected from relation R.

Example. The graph on the left side of Fig. 1 defines the relation:
R = { (1,a),(1,c),(2,b),(3,a),(3,b),(4,c) }.

The set Func(R) consists of four total functions that may be selected as a subset of
the relation:

Func(R)= { f1 = { (1,a),(2,b),(3,a),(4,c) }, f2 = { (1,a),(2,b),(3,b),(4,c) },
f3 = { (1,c),(2,b),(3,a),(4,c) }, f4 = { (1,c),(2,b),(3,b),(4,c) }}.

4 Computing Relations in a Query Model
It is well known how to compute functions in a query model. Algorithm simply has

to output the function value with certain probability. But what does it mean to compute
a relation in a query model? We propose three different options to describe that a query
algorithm computes a relation and define three types of query algorithms based on these
options.

Definition 3. Query algorithm computes relation R in a definite manner, if for each
X it outputs one certain correct value from a result set with probability p = 1. Classical
query complexity is denoted by CD(R). Quantum query complexity is denoted by QD(R).

The type of classical decision tree that computes a relation in a definite manner is
deterministic decision tree. In the quantum version, corresponding algorithm type is an
exact quantum query algorithm.

Definition 4. Query algorithm computes relation R in a randomly distributed manner,
if for each X it outputs arbitrary values from a result set with arbitrary probabilities (for
each value, such probability has to be positive) and never outputs an incorrect value.
Classical query complexity is denoted by CRD(R). Quantum query complexity is denoted
by QRD(R).

This definition is more natural and takes into account the essence of relation as a
mathematical object. In a classical query model, probabilistic decision trees should be
used to produce the described behavior. Quantum query algorithms seem to be better
suited for computing relations in a distributed manner because of the superposition
principle. To achieve the goal, we need to bring quantum system in such a superposition,
where only basis states associated with values from the result set have non-zero amplitude
values. After the measurement, quantum system collapses to one of these basis states
with a probability determined by its amplitude value.

73Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query ..

Definition 5. Query algorithm computes relation R in uniformly distributed manner,
if for each X it outputs each value from a result set with equal probability and never
outputs an incorrect value. Classical query complexity is denoted by CUD(R). Quantum
query complexity is denoted by QUD(R).

This definition adds a serious constraint to design of a query algorithm. However, in
our opinion, this definition is the most reasonable in a sense of computing a relation.

Each definition may be applied for solving specific real-world computational
problems. We are most interested in comparing complexity of computing relations in
the same manners in classical and quantum query models. Our goal is to analyze special
features and differences of algorithm implementation to produce examples with large
difference between classical and quantum query complexity.

5 Examples of Computing Relations
In this section, we present examples of computing relations in both classical and

quantum query models. In all our examples, we achieve a speed-up in quantum algorithm
complexity comparing to the best possible classical analogue.

5.1 First Example of Computing a Relation

Let us consider an online banking client service system. To receive specific kind
of bank’s services, client sends a request to the system. System has to analyze client’s
request, determine a set of appropriate agents and assign a request to some agent from
this set.

In our example, we assume four agents: Alice (id = 1), Bob (id = 2), Carol (id = 3)
and Daren (id = 4). There are three factors that determine a set of appropriate agents for
each client – location, client status and loan history.

Table 1 describes these parameters. Second column contains a reference to the
system function that has to be invoked to calculate parameter value. Invocation of each
function can be interpreted as querying a black box and internal calculations may involve
various database requests and other costly operations. Third column contains possible
parameter values; fourth column contains corresponding numeric value returned by
each function.

Table 2 defines the three-variable relation with Boolean domain and four-valued
range - R1 : {0,1}3 → {1, 2, 3, 4}.

Table 1

Parameters that determine an agent that is able to serve client’s request
Parameter Value

Description System function Actual Numeric

Client location getLocation(client_id)
Saldus 0

Ventspils 1

Client status isVIP(client_id)
Normal 0

VIP 1
Does client have an

active loan?
hasLoan(client_id)

No 0
Yes 1

74 Computer Science and Information Technologies

Rows of Table 2 have to be interpreted as the following statements:
•	 If a request is received from an ordinary client from Saldus, which does not

have an active loan (X = 000), then a request should be served by either Alice
or Carol;

•	 If a request is received from an ordinary client from Saldus, which has an active
loan (X = 001), then a request should be served by either Alice or Daren;

•	 If a request is received from a VIP client from Saldus, which does not have an
active loan (X = 010), then a request should be served by either Bob or Daren;

•	 etc.
Table 2

Definition of the relation R1
X R1 (X) X R1 (X)

000 { 1 , 3 } 100 { 2 , 4 }
001 { 1 , 4 } 101 { 2 , 3 }
010 { 2 , 3 } 110 { 1 , 4 }
011 { 2 , 4 } 111 { 1 , 3 }

Now, let us discuss the computational complexity of relation R1.

5.2 Definite Query Complexity of Relation R1

When computing a relation in definite manner, algorithm has to output one certain
correct value from a result set with probability p = 1. It means that we are just aware of
that client’s request is not forwarded to incompetent agent, but we do not care about the
work distribution among the competent agents.

Theorem 1. CD(R1) = 2.

Proof. It is easy to see that one query is not enough to compute this relation
classically in a definite manner. However, two queries are sufficient to reach the goal –
we only need to know the values of the first two variables. Deterministic decision tree
is shown in Fig. 2.

Actually, what we need is to compute XOR of the first two bits. If XOR(x1, x2) = 0,
algorithm outputs “1”. Otherwise, algorithm outputs “2”. □

Fig. 2. Deterministic decision tree that computes R1 in a definite manner
 □

Theorem 2. QD(R1) = 1.

Proof. It is well known that XOR of two bits can be computed exactly in the
quantum query model by asking one query. It immediately implies that relation R1 can

75Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query ..

be computed with one query in a quantum query model in a definite manner. Quantum
algorithm is shown in Fig. 3 and described below.

Fig. 3. Quantum query algorithm that computes R1 in a definite manner

Algorithm uses one-qubit quantum system. Each horizontal line corresponds to
the amplitudes of the basis states |0〉 and |1〉. Large rectangles correspond to the 2 × 2
Hadamard matrices. Single query Q0 is defined by the unitary matrix:

Query matrix specifies how the signs of amplitudes of basis states change depending
on variable values. Measurement is performed after the last unitary transformation.
Finally, two small squares at the end of each horizontal line define the output value for
each basis state. □

The problem with such implementation of work distribution algorithm is that all
requests will be forwarded to Alice and Bob only, but Carol and Daren will be bored
without work.

5.3 Uniformly Distributed Query Complexity of Relation R1

Now, let us consider computing R1 in uniformly distributed manner, which seems
to be much more practical. This time algorithm has to output each value from the result
set with equal probability and should never output incorrect value.

Obviously, one query is not enough in the classical case. However, this time again,
two queries suffice.

Theorem 3. CUD(R1) = 2.
Proof. Classical probabilistic decision tree that computes R1 in uniformly distributed

manner is shown in Fig. 4. □

Fig. 4. Probabilistic decision tree that computes R1 in uniformly distributed manner

76 Computer Science and Information Technologies

Theorem 4. QUD(R1) = 1.
Proof. Quantum query algorithm Q1, which computes R1 in the same uniformly

distributed manner with one query, is presented in Fig. 5 and described below.

Fig. 5. Quantum query algorithm Q1 for computing R1 in uniformly distributed manner

Algorithm Q1 uses two-qubit quantum system. Each horizontal line corresponds
to the amplitude of the basis state. Large rectangles correspond to the 4 × 4 unitary
matrices. Four small squares at the end of each horizontal line define the output value
for each basis state.

Single query Q0 is defined by the unitary matrix:

Computational process for each input X is shown in Table 3. □

Table 3
Computation process of the quantum query algorithm Q1

X State after the query State before the measurement Output

000 Pr(“1”)=1/2
Pr(“3”)=1/2

001 Pr(“1”)=1/2
Pr(“4”)=1/2

010
 1 1 1 1

2 2 2 2

T − 
 

Pr(“2”)=1/2
Pr(“3”)=1/2

011 Pr(“2”)=1/2
Pr(“4”)=1/2

100 Pr(“2”)=1/2
Pr(“4”)=1/2

101 Pr(“2”)=1/2
Pr(“3”)=1/2

110 Pr(“1”)=1/2
Pr(“4”)=1/2

111 Pr(“1”)=1/2
Pr(“3”)=1/2

77Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query ..

This time all work items are equally distributed among agents.
With this basic example we have demonstrated query algorithms for computing

relations in action. We have shown that even in such a simple case of relation with three
Boolean variables it is possible to obtain a gap between classical and quantum query
complexity. In the next subsection, we demonstrate how to enlarge the complexity gap
in uniformly distributed case.

5.4 Generalizations of the Relation R1

In this subsection, we demonstrate two extensions of the relation R1 with a bigger
number of variables and more impressive complexity separation between classical and
quantum algorithms.

Definition 6. Relation R2 : {0,1}N → {1, 2, ..., 2(N–1)} associates each input
element from the domain set with (N-1) output elements from the range set according to
the following rule:

∀ 1 < i ≤ N : if (x1 ⊕ xi = 0),	 then (X, 2(i–1) –1) ∈ R2

				 otherwise (X, 2(i–1)) ∈ R2

It turns out that it is possible to compute relation R2 classically in uniformly
distributed manner using two queries.

Theorem 5. CUD(R2) = 2.

Proof. Classical probabilistic decision tree is demonstrated in Fig. 6. □

Fig. 6. Classical query algorithm for computing R2 in uniformly distributed manner

Theorem 6. QUD(R2) = 1.

Proof. To compute relation R2 in a quantum query settings, we extend algorithm
Q1 to query all N relation variables in a single query. To be able to handle all variables,

78 Computer Science and Information Technologies

we extend quantum system to have 2(N–1) basis states. Fig. 7 shows quantum algorithm
Q2, which is an extended version of the algorithm Q1. H is the 2×2 Hadamard
transformation, ⊕ denotes matrix tensor product operation. Quantum system consists of
A qubits, where A = log2(2(N – 1)).

Fig. 7. Quantum query algorithm Q2 for computing R2 in uniformly distributed manner

Important moment is that variable x1 is assigned to all odd amplitudes, but remaining
variables x2, ..., xN are sequentially assigned to even amplitudes. □

In this example, we enlarged the number of relation variables, but did not succeeded
yet in enlarging the gap between classical and quantum query complexity.

Next, we demonstrate another generalization of the relation R1. This time we
achieve a gap 2N versus N between classical and quantum query complexity.

Definition and behavior of relation R3 is similar to relation R2 – it associates each
input element with (N-1) output elements from the range set. But this time more variables
are involved in the condition of the rule, which defines the relation.

Definition 7. Relation R3 : {0,1}N2 → {1, 2, ..., 2(N – 1)} associates each input
element from the domain set with (N-1) output elements from the range set according to
the following rule:

∀ 1 < i ≤ N : if ((x1 ⊕ x2 ⊕ ... ⊕ xN) ⊕ (x(i–1)N+1 ⊕ x(i–1)N+2 ⊕ ... ⊕ x(i–1)N+N) = 0)

			 then (X, 2(i–1) –1) ∈ R3

			 otherwise (X, 2(i–1)) ∈ R3

To compute relation R3 in a classical query model, 2N queries are required.

79Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query ..

Theorem 7. CUD(R3) = 2N.

Proof. In order to determine which range set element to include into the result set,
it is necessary to know values of all 2N variables involved into condition of the rule. A
part of classical decision tree is depicted in Fig. 8. All sequentially queried variables are
joined into one common query represented in the diagram by ellipses. Multiple arrows
corresponding to common query outcomes are exiting these ellipses. □

Fig. 8. Classical query algorithm for computing R3 in uniformly distributed manner

Theorem 8. QUD(R3) = N.
Proof. General structure of the algorithm remains the same, but we add more

queries. Algorithm Q3 is presented in Fig. 9. Again, odd amplitudes all have the same set
(x1, ..., xN) of queried variables assigned. Remaining variables are sequentially assigned
to even amplitudes. □

80 Computer Science and Information Technologies

Fig. 9. Quantum query algorithm Q3 for computing R3 in uniformly distributed manner

In this subsection, we demonstrated approach for extending relations to a larger
number of variables. As a result we obtained a complexity separation N versus 2N, which
is the same as the largest separation between quantum exact and classical deterministic
query algorithm for total functions known for today. During computing relations correct
result is obtained with probability p = 1 as well (algorithm always outputs some correct
value from the result set). However, the structure of considered relations is based on
XOR operation. All examples of N versus 2N separations for functions, that we are
aware of, are directly based on XOR as well. We are interested to find different cases,
where XOR is not involved in obtaining a speed-up.

5.5 Second Example of Computing a Relation

Let us consider some TV company that offers minimal package and four more
supplementary packages: movies, sports, social talk-shows and cartoons. Every client is
free to choose any number of supplementary packages he is interested in. Company is
willing to make a present for each client according to client’s choice of packages. There
are four different types of gift, let us mark them “1”, “2”, “3”, “4”.

Rule 1. If a client has one or three packages besides minimal package, company has
to choose one from “1”, “2”, “3”, “4” (probability to choose any gift from the scope has
to be equally distributed between options, each having p = ¼ to be selected).

Rule 2. If a client has only the minimal package or all four supplementary packages,
company presents a gift of type “1”.

Rule 3. If a client has chosen movies and social talk-shows or sports and cartoons,
company presents a gift of type “2”.

Rule 4. If a client has chosen movies and sports or social talk-shows and cartoons,
company presents a gift of type “3”.

Rule 5. If a client has chosen movies and cartoons or social talk-shows and sports,
company presents a gift of type “4”.

81Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query ..

Table 4 defines relation with Boolean domain and four-valued range: R4 : {0,1}4 →
{1, 2, 3, 4}. Let us assign an index to each type of packages: 1 for movies, 2 for sports,
3 for social talk-shows and 4 for cartoons. Each bit in the input string X gives the
information whether i-th package is chosen by the client. 0000 means that only the
minimal package is chosen, 1111 – full and so on.

Table 4

Definition of the relation R4

X R4 {X} X R4 {X}
0000 {1} 1000 {1,2,3,4}
0001 {1,2,3,4} 1001 {4}
0010 {1,2,3,4} 1010 {2}
0011 {3} 1011 {1,2,3,4}
0100 {1,2,3,4} 1100 {3}
0101 {2} 1101 {1,2,3,4}
0110 {4} 1110 {1,2,3,4}
0111 {1,2,3,4} 1111 {1}

5.6 Uniformly Distributed Query Complexity of Relation R4

Now, let us discuss the complexity of relation R4. We consider computing R4 again
in the same uniformly distributed manner.

Theorem 9. CUD(R4) = 3.

Proof. Proof of this fact consists of two steps. First, we show that it is not possible
to build a classical randomized decision tree of depth d = 2, which computes R4 in
uniformly distributed manner. Second, we present a tree, which computes R4 using
three queries.

Lemma 1. It is not possible to build a classical randomized decision tree of depth
d = 2, which computes R4 in uniformly distributed manner.

Proof. Let us assume there exists a tree where all paths from root to leaves contain
no more than two variables. When executing algorithm on input X = 0000 result “1”
should be output with probability p = 1. It means that there exists a path from root
to leaf with value ”1”, which goes through some two variables: xA = 0 and xB = 0.
This path is depicted in Fig. 10. The fact is that it is not possible to select A and B to
avoid contradictions with other inputs. Table 5 shows all possible selections of A and B,
together with such input Y, which has the same values in positions A and B as X = 0000.
For these inputs, algorithm goes the same path as for X = 0000 and finishes in a leaf with
value “1”, which is incorrect for Y, thus causing a contradiction with a correct output
value for Y. So, it is not possible to build a classical randomized decision tree of depth
d = 2, which computes R4 in uniformly distributed manner. □

82 Computer Science and Information Technologies

Fig. 10. Path for input X=0000 in a potential classical randomized decision tree of
depth d = 2 for computing R4 in uniformly distributed manner

Table 5

All possible selections of A and B, each causing a contradiction

A B Input Y, for which algorithm goes through the same path (Fig. 10),
which contradicts with X=0000 in output value R4 (X)

1 2 0011 {3}
1 3 0101 {2}
1 4 0110 {4}
2 3 1001 {4}
2 4 1010 {2}
3 4 1100 {3}

Lemma 2. There exists a classical randomized decision tree, which computes R4 in
uniformly distributed manner using three queries.

Proof. Classical probabilistic decision tree that computes R4 in uniformly
distributed manner is shown in Fig. 11.

Fig. 11. Probabilistic decision tree that computes R4 in uniformly distributed manner

83Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query ..

Theorem 10. QUD(R4) = 1.

Proof. Quantum query algorithm Q4, which computes R4 in the same uniformly
distributed manner with one query, is presented in Fig. 12. □

Fig. 12. Quantum query algorithm Q4 for computing R4 in uniformly distributed manner

We would like to note that definition of the relation R4 and algorithm Q4 in some
sense look similar to the definition and solution of the well-known Deutsch-Jozsa
problem [12,13]. Careful reader could figure out this similarity by oneself. However, as
we demonstrate further, generalization of that relation is not of that kind anymore.

5.7 First generalization of the relation R4

Let us define the relation R4N : {0,1}4N → {1, 2, 3, 4}. Imagine that 4N variables are
put on four vertical lines (v-lines) in such a way that:

∀i ∈ {0, ...N – 1}, ∀k ∈ {1,2,3,4} : x4i+k, belongs to v-line number k.

For example, x1, x5, x9, x13, ... are placed on the 1st v-line, x2, x6, x10, x14, ... – on the
2nd, and so on (see Fig. 13 for illustration).

The result set for each input X of the relation is defined as follows:
1.	 R4N (X) = {1}, if all four v-lines of X contains either odd or even number of

”1”s. For example, for the next input strings, the relation’s result set is {1}:
– input string 00000000 has zero ”1”s on each v-line
– input 00010001 has zero ”1”s on the first, second and third v-line and two ”1”s

on the fourth v- line
– input 00001111 has one ”1” on each v-line
– input 11111111 has exactly two ”1”s on each v-line

2.	 R4N (X) = {2}, if 1st and 3rd v-lines of X have odd number of ”1”s and 2nd and 4th
have even number of ”1”s, or vice versa: 1st an 3rd – even and 2nd and 4th – odd.
For example, input strings 00000101, 00001010, 01011111, 11011000 have the
result set {2}.

3.	 R4N (X) = {3}, if 1st and 2nd v-lines of X have odd number of ”1”s and 3rd and
4th have even number of ”1”s, or vice versa: 1st and 2nd – even and 3rd and 4th
– odd. For example, input strings 00000011, 00001100, 00111111, 10001011
have the result set {3}.

4.	 R4N (X) = {4}, if 1st and 4th v-lines of X have odd number of ”1”s and 2nd and

84 Computer Science and Information Technologies

3rd have even number of ”1”s, or vice versa: 1st and 4th – even and 2nd and 3rd –
odd. For example, input strings 00000110, 00001001, 00111010, 10011111
have the result set {4}.

5.	 In all other cases, R4N (X) = {1,2,3,4}.

Theorem 11. QUD(R4N) = N.

Proof. Quantum algorithm that computes relation in the uniformly distributed
manner is presented in Fig. 13. Each quantum query Qi is defined by the following
unitary matrix: □

.

Fig. 13. Quantum query algorithm for computing R4N in uniformly distributed manner

Theorem 12. QUD(R4N) ≥ 3N.

Proof. Let us assume there exists a classical decision tree that computes relation R4N
by asking 3N−1 questions. We use all zeros input X = 0

→

 to demonstrate a contradiction.
Suppose we queried arbitrary 3N−1 variables, N+1 variables remain unquestioned.

On 4N-zeros input X = 0
→

 algorithm has to output value ”1” because all v-lines
contain zero number of ”1”s. Then, we consider only such inputs that have ”0” in all
queried 3N−1 variables and exactly two ”1”s among remaining unquestioned variables.
For all such inputs, algorithm will follow the same path and will finish in the same
leaves with output value ”1”.

However, all N+1 unquestioned variables cannot be located on one v-line, simply
because each v-line consists of N variables. So, there is an input for which two ”1”s
among unquestioned variables are located on different v-lines. As we know, the result
set in such case is {2} or {3} or {4}. Thus, algorithm outputs incorrect value for this
input, this fact contradicts with the initial assumption and implies QUD(R4N) ≥ 3N. □

85Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query ..

5.8 Second generalization of the relation R4
Suppose we are given a relation of N variables RN : {0,1}N → {1,2,...,N}, where N

is power of 2. This time, we do not provide full definition of the relation; it follows from
properties of quantum algorithm described below. We would only like to demonstrate
that such generalization is technically possible.

This time, we consider computing relation in a randomly distributed manner.
Algorithm is allowed to output any value from the result set with arbitrary probability,
but probability for each value has to be positive: p > 0.

Theorem 13. There is a quantum query algorithm computing specific relation RN in
a randomly distributed manner asking one question only: QRD(RN) = 1.

Proof. We add more qubits and sequentially assign variables to amplitudes. Given
, quantum algorithm starts with k-qubit zero state |0〉, then applies N × N

Hadamard matrix, N-variable query and finally applies N × N Hadamard matrix once
again. Algorithm is depicted in Fig. 14. □

Fig. 14. Generalization of the quantum query algorithm for computing RN

Theorem 14. .

Proof. Let us analyze the relation that is computable by the extended quantum
algorithm. Imagine the first element of the quantum algorithm result vector (amplitude
of the quantum basis state |0〉) right before the quantum measurement. It can be described
by the formula:

.
If all xi = 0, then α1 = 1 , so for the input X = 00…0, algorithm outputs ”1” with

probability p = 1. Let us suppose exactly N / 2 variables are ”1”s and are ”0”s. In

this case, α1 is precisely zero for all possible combinations. It means that probability to

observe result value ”1” for any such input is p = 0.

86 Computer Science and Information Technologies

Classical algorithm has to behave in the same way: for input X = 00…0, value ”1”
has to be produced with probability p = 1, but for all inputs with exactly N / 2 ”1”s, result
value ”1” is not allowed to be output at all. This implies we are unable to recognize
relation classically by asking only N / 2 variable values, at least N / 2 + 1 queries are
required. □

5.9 Third Example of Computing a Relation

In this section, we demonstrate our last example of computing a relation. We present
a quantum query algorithm that computes the relation asking two queries in uniformly
distributed manner; while classically at least five queries are necessary to compute the
same relation.

Important fact is that the structure of a relation and the algorithm for computing it
are not based on XOR operation. In the area of quantum query algorithms for computing
total functions, all examples, that we are aware of at the moment, where quantum query
complexity is two times less than classical query complexity are directly based on
utilization of XOR operation.

Another important moment is that in this example the result set for each input
consists of two elements and there is no input for which the result set consists of all
possible output values.

Relation R5 : {0,1}6 → {1,2,3,4} is defined by the following set of rules:
•	 if x1 = x2 & x3 = 0 & x1 = x5 , then R5(X) = {1,2};
•	 if x1 = x2 & x3 = 0 & x1 ≠ x5, then R5(X) = {3,4};
•	 if x1 = x2 & x3 = 1 & x1 = x6, then R5(X) = {2,3};
•	 if x1 = x2 & x3 = 1 & x1 ≠ x6, then R5(X) = {1,4};
•	 if x1 ≠ x2 & x3 = 0 & x1 = x4 & x5 = 0, then R5(X) = {1,4};
•	 if x1 ≠ x2 & x3 = 0 & x1 = x4 & x5 = 1, then R5(X) = {2,3};
•	 if x1 ≠ x2 & x3 = 0 & x1 = x4 & x5 = 0 , then R5(X) = {2,3};
•	 if x1 ≠ x2 & x3 = 0 & x1 ≠ x4 & x5 = 1, then R5(X) = {1,4};
•	 if x1 ≠ x2 & x3 = 1 & x1 = x4 & x6 = 0, then R5(X) = {3,4};
•	 if x1 ≠ x2 & x3 = 1 & x1 = x4 & x6 = 1, then R5(X) = {1,2};
•	 if x1 ≠ x2 & x3 = 1 & x1 ≠ x4 & x6 = 0, then R5(X) = {1,2};
•	 if x1 ≠ x2 & x3 = 1 & x1 ≠ x4 & x6 = 1, then R5(X) = {3,4}.

Theorem 15. 5 ≤ CUD(R5) ≤ 6.

Proof. Let us assume there exists a classical randomized decision tree that computes
relation R5 by asking four queries. We analyze algorithm behavior for the certain input
X=010000. According to the definition of the uniformly distributed algorithm, decision
tree must output correct values from the result set for each input with equal probability.
It means that there has to be a path in the tree, which goes through at most four variable
nodes, follows arrows with variable values corresponding to values of X=010000 and
finishes in a leaf with the output value «4». On the other hand, for any choice of four

87Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query ..

variables for that path, there exists another input X, which equals X in selected four
variables values, but does not have «4» among the result set values according to the
definition of relation R5. All such contradicting inputs are listed in Table 6. For any such
input, computation goes through the same path in the decision tree as for X=010000
and finishes in a leaf with incorrect value «4». It is a contradiction, so assumption is
wrong and classical randomized decision tree that computes relation R5 using only four
queries does not exist. □

Table 6

Proof of Theorem 15: contradictions in result set values

Path variables Input X’ contradicting with X=010000 R5(X ' )

x1,x2,x3,x4 010010 {2,3}

x1,x2,x3,x5 010100 {2,3}

x1,x2,x3,x6 010010 {2,3}

x1,x2,x4,x5 011001 {1,2}

x1,x2,x4,x6 010010 {2,3}

x1,x2,x5,x6 010100 {2,3}

x1,x3,x4,x5 000000 {1,2}

x1,x3,x4,x6 000000 {1,2}

x1,x3,x5,x6 000000 {1,2}

x1,x4,x5,x6 000000 {1,2}

x2,x3,x4,x5 000000 {1,2}

x2,x3,x4,x6 000000 {1,2}

x2,x3,x5,x6 000000 {1,2}

x2,x4,x5,x6 000000 {1,2}

x3,x4,x5,x6 000000 {1,2}

Theorem 16. QUD(R5) = 2.

Proof. Quantum query algorithm that computes R5 with two queries is presented in
Fig. 15. Sign “+” inside question circle signifies that none variable impacts the value of
corresponding amplitude. □

Fig. 15. Quantum query algorithm Q5 for computing R5 in uniformly distributed manner

88 Computer Science and Information Technologies

6 A Note on Computing Relations in a Definite Manner
In this section, we discuss the first type of query algorithms for relations, which

compute relations in a definite manner. Are there prospects to obtain a large separation
between classical and quantum complexity?

According to the definition, for each input X, such algorithm always outputs one
definite value. The only condition is that this value should be from the result set assigned
to that input by relation R. It actually means that a definite query algorithm for relation
R computes a function, which is a subset of relation.

When designing a query algorithm to compute relation R in a definite manner,
we may choose some arbitrary function from a set Func(R), which is better suited for
computing in a query model, and construct an algorithm for that function. So, classical
and quantum query complexities for computing relation definitely are expressed by
formulas:

 		

It appears that the task of enlarging the gap between classical and quantum query
complexity to compute relations in a definite manner is completely the same as when
computing usual functions in a query model. Even more, the interesting moment is that
the functions selected from the set Func(R) for computing in classical and quantum
cases may also be different. Unfortunately, it does not give us additional tool to enlarge
the complexity gap when computing relations instead of functions, quite contrary. For
that reason, computing relations in a distributed manner looks much more interesting.

7 Conclusion
In this paper, we considered computing mathematical relations instead of Boolean

functions in a query model. Various general computational problems and tasks of certain
type in software engineering may be represented in terms of relations. We proposed
three types of a query algorithm for computing relations with different output behavior.

We demonstrated several examples of computing relations in classical and quantum
versions of a query model.

In the first example, the definition of relation is based on XOR operation. We
generalized the basic relation and obtained an example, when quantum query algorithm
computes relation with N2 variables using N queries, while 2N queries are required in
the classical case. This result repeats the largest separation between quantum exact and
classical deterministic query complexity for functions that is known for today.

In the second example, a quantum query complexity for relation is more than two
times less than classical query complexity for the same relation. However, the considered
relation has a property of having inputs for which the result set consists of all range set
elements.

In the third example, we considered finite six-variable relation, which is not based
on XOR operation and there are no inputs for which result set consists of all range set
elements. These properties make this relation very interesting. For this relation, quantum
query complexity is also more than two times less than classical query complexity.

89Alina Vasilieva, Taisia Mischenko-Slatenkova. Computing Relations in the Quantum Query ..

Finally, we discussed the specifics of computing relations in a definite manner and
concluded that the task of computing relations in a distributed manner is more promising
for enlarging the gap between classical and quantum query complexity.

Results presented in this paper build a foundation for further investigation. The
main goal, which we are looking to achieve, is to construct examples with larger
complexity separation between classical and quantum query algorithm complexity. The
most important work direction is to develop a technique for proving complexity lower
bounds for computing relations in a classical query model.

8 Acknowledgments
We would like to thank our supervisor Rūsiņš Freivalds for familiarizing us with

quantum computation and for permanent support and advising.
This work has been supported by the European Social Fund within the project

„Support for Doctoral Studies at University of Latvia”.

References
1.	 Buhrman, H., de Wolf, R.: Complexity Measures and Decision Tree Complexity: A Survey. Theoretical

Computer Science, v. 288(1): 21-43 (2002)
2.	 Shor, P. W.: Polynomial time algorithms for prime factorization and discrete logarithms on a quantum

computer. SIAM Journal on Computing, 26(5):1484-1509 (1997)
3.	 Grover L.K.: From Schrödinger‘s equation to quantum search algorithm, American Journal of Physics,

69(7): 769-777 (2001)de Wolf, R.: Quantum Computing and Communication Complexity. University of
Amsterdam (2001)

4.	 Ambainis, A.: Quantum query algorithms and lower bounds (survey article). In Proceedings of FOTFS
III, Trends on Logic, vol. 23, pp. 15-32 (2004)

5.	 Kaye, R., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford (2007)
6.	 Ambainis, A., Childs, A., Reichardt, B., Spalek, R., Zhang, S.: Any AND-OR formula of size N can be

evaluated in time O(N^{1/2+epsilon}) on a quantum computer. SIAM J. Comput. Volume 39, Issue 6, pp.
2513-2530 (2010).

7.	 Vasilieva, A., Mischenko-Slatenkova, T.: Quantum Query Algorithms for Conjunctions. Proc. of the UC
2010, Lecture Notes in Computer Science, Springer Berlin / Heidelberg, vol. 6079/2010, ISBN: 978-3-
642-13522-4, pp. 140-151 (2010)

8.	 Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press, (1997)
9.	 Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press

(2000)
10.	 Weisstein, E. W.: Relation. From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/

Relation.html
11.	 D. Deutsch and R. Jozsa: Rapid solutions of problems by quantum computation. In Proceedings of the

Royal Society of London, volume A 439, pp. 553-558 (1992)
12.	 R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca: Quantum algorithms revisited. In Proceedings of the

Royal Society of London, volume A 454, pp. 339–354 (1998)

Dmitrijs Rutko
Fuzzified Algorithm for Game Tree Search with Statistical and ..

Scientific Papers, University of Latvia, 2011. Vol. 770
Computer Science and Information Technologies	 90–111 P.

Fuzzified Algorithm for Game Tree Search with
Statistical and Analytical Evaluation

Dmitrijs Rutko1

Faculty of Computing, University of Latvia
Raina blvd. 19, Riga, LV-1586, Latvia

dim_rut@inbox.lv

This paper presents a new game tree search algorithm which is based on the idea that the
exact game tree evaluation is not required to find the best move. Therefore, pruning
techniques may be applied earlier resulting in faster search and greater performance. The
experiments show that applied to an abstract domain, the presented algorithm outperforms the
existing ones such as PVS, Negascout, NegaC*, SSS*/ Dual* and MTD(f). This paper also
provides improvements for algorithm such as statistical and analytical game tree evaluation.

Keywords: game tree search, alpha-beta pruning, fuzzified search algorithm, performance.

1 Introduction

Games are usually represented with the help of a game tree which starts at the
initial position and contains all the possible moves from each position. Classical
game tree search algorithms such as Minimax and Negamax operate using a
complete scan of all the nodes of the game tree and are considered to be too
inefficient. The most practical approaches are based on the Alpha-beta pruning
technique, which seeks how to reduce the number of nodes to be evaluated in the
search tree. It is designed to completely stop the evaluation of a move if at least one
possibility is found, the one that proves the current move to be worse than the
previously examined move. Such moves do not need to be evaluated further.

The examples of more advanced algorithms that are even faster while still being
able to compute the exact minimax value, are PVS, Negascout and NegaC*. The
other group of algorithms like SSS* / Dual* and MTD(f), use best-first strategy,
which can potentially make them more time-efficient, however, typically at a heavy
cost of space-efficiency.

Through analyzing and comparing these algorithms it can be seen that in many
cases the decision about the best move can be made before the exact game tree
minimax value is obtained. The author introduces a new approach which allows
finding the best move faster while visiting less nodes.

The paper is organized as follows: the current situation in the game tree search
is discussed; then the idea that allows performing game tree search in a manner

1 This research is supported by the European Social Fund project
 No. 2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004.

91Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

based on the move that leads to the best result is proposed; the algorithm structure
and implementation details are explained. Thereafter, improvements to the
algorithm, such as statistical selflearning and analytical evaluation, are discussed.
Then, the experimental setup and empirical results on the search performance
obtained in abstract domain are shown. The paper is concluded with future research
directions.

2. State of the Art

Classical game tree search algorithms are based on the lphabeta pruning
techniue. lphabeta is a search algorithm which tries to reduce the number of
nodes to be evaluated in the search tree by the Minimax algorithm. It completely
stops evaluating a move when at least one possibility has been found that proves the
move to be worse than a previously examined one. Such moves need not be
evaluated further. When applied to a standard minimax tree, it returns the same
move as minimax would, but prunes away branches that cannot possibly influence
the final decision [12].

The illustration of the lphabeta approach is given in .

 Traditional lphaeta approach

The game tree in  has two branches with minimax values 2 and 8 for

the left and right subtrees respectively. In order to find the best move, the lpha
beta algorithm is scanning all the subtrees from the left to the right and is forced to
evaluate almost each node. The possible cutoffs are depicted with a dashed line (at

1 2 7 4 3 6 8 9 5 4

2 7 8 9

2 8

8

√ √

√

Χ

Χ

√

√

√

Χ

Χ

max

min

max

based on the move that leads to the best result is proposed; the algorithm structure
and implementation details are explained. Thereafter, improvements to the
algorithm, such as statistical self-learning and analytical evaluation, are discussed.
Then, the experimental setup and empirical results on the search performance
obtained in abstract domain are shown. The paper is concluded with future research
directions.

2 State of the Art

Classical game tree search algorithms are based on the Alpha-beta pruning
technique. Alpha-beta is a search algorithm which tries to reduce the number of
nodes to be evaluated in the search tree by the Minimax algorithm. It completely
stops evaluating a move when at least one possibility has been found that proves the
move to be worse than a previously examined one. Such moves need not be
evaluated further. When applied to a standard minimax tree, it returns the same
move as minimax would, but prunes away branches that cannot possibly influence
the final decision [12].

The illustration of the Alpha-beta approach is given in Fig. 1.

Fig. 1 Traditional Alpha-Beta approach

The game tree in Fig. 1 has two branches with minimax values 2 and 8 for the

left and right sub-trees respectively. In order to find the best move, the Alpha-beta
algorithm is scanning all the sub-trees from the left to the right and is forced to
evaluate almost each node. The possible cut-offs are depicted with a dashed line (at

1 2 7 4 3 6 8 9 5 4

2 7 8 9

2 8

8

√ √ √ Χ Χ √ √ √ Χ Χ

max

min

max

based on the move that leads to the best result is proposed; the algorithm structure
and implementation details are explained. Thereafter, improvements to the
algorithm, such as statistical self-learning and analytical evaluation, are discussed.
Then, the experimental setup and empirical results on the search performance
obtained in abstract domain are shown. The paper is concluded with future research
directions.

2 State of the Art

Classical game tree search algorithms are based on the Alpha-beta pruning
technique. Alpha-beta is a search algorithm which tries to reduce the number of
nodes to be evaluated in the search tree by the Minimax algorithm. It completely
stops evaluating a move when at least one possibility has been found that proves the
move to be worse than a previously examined one. Such moves need not be
evaluated further. When applied to a standard minimax tree, it returns the same
move as minimax would, but prunes away branches that cannot possibly influence
the final decision [12].

The illustration of the Alpha-beta approach is given in Fig. 1.

Fig. 1 Traditional Alpha-Beta approach

The game tree in Fig. 1 has two branches with minimax values 2 and 8 for the

left and right sub-trees respectively. In order to find the best move, the Alpha-beta
algorithm is scanning all the sub-trees from the left to the right and is forced to
evaluate almost each node. The possible cut-offs are depicted with a dashed line (at

1 2 7 4 3 6 8 9 5 4

2 7 8 9

2 8

8

√ √ √ Χ Χ √ √ √ Χ Χ

max

min

max

92 Computer Science and Information Technologies

each step, the previous evaluation is smaller than the value of currently checked
node).

When all the nodes are checked, the algorithm compares the top-level sub-trees.
The evaluation of the left and the right branches are 2 and 8 respectively; the highest
outcome is chosen, and the best move goes to the right sub-tree.

The benefit of alpha-beta pruning lies in the fact that branches of the search tree
can be eliminated. The search time can in this way be limited to the 'more promising'
subtree, and a deeper search can be performed in the same time.

Since the minimax algorithm and its variants are inherently depth-first, a
strategy such as iterative deepening is usually used in conjunction with alpha-beta so
that a reasonably good move can be returned even if the algorithm is interrupted
before it has finished execution. Another advantage of using iterative deepening is
that searches at shallower depths give move-ordering hints that can help produce
cutoffs for higher-depth searches much earlier than would otherwise be possible
[11].

More advanced algorithms are the following:
• PVS (Principal Variation Search) is an enhancement to Alpha-Beta based

on null or zero window searches of none PV-nodes to prove whether a
move is worse or not than the already safe score from the principal
variation [1][10].

• NegaScout, which is an Alpha-Beta enhancement. The improvements rely
on a Negamax framework and some fail-soft issues concerning the two last
plies which did not require any re-searches [3] [4].

• NegaC* – an idea to turn a Depth-First to a Best-First search like MTD(f)
to utilize null window searches of a fail-soft Alpha-Beta routine and to use
the bounds that are returned in a bisection scheme [5].

• SSS* and its counterpart Dual* are search algorithms which conduct a state
space search traversing a game tree in a best-first fashion similar to that of
the A* search algorithm and retain global information about the search
space. They search fewer nodes than Alpha-Beta in fixed-depth minimax
tree search [2].

• MTD(f), the short name for MTD(n, f), which stands for Memory-enhanced
Test Driver with node n and value f. MTD is the name of a group of driver-
algorithms that search minimax trees using null window alpha-beta with
transposition table calls. In order to work, MTD(f) needs a first guess as to
where the minimax value will turn out to be. The better than first guess is,
the more efficient the algorithm will be, on average, since the better it is,
the less passes the repeat-until loop will have to do to converge on the
minimax value [6] [7] [8] [9].

Transposition tables are another technique which is used to speed up the search
of the game tree in computer chess and other computer games. In many games, it is
possible to reach a given position, which is called transposition, in more than one
way. In general, after two moves there are 4 possible transpositions since either
player may swap their move order. So it is still likely that the program will end up
analyzing the same position several times. To avoid this problem transposition tables
store previously analyzed positions of the game [11].

93Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

3 Fuzzy Approach

The author proposes a new approach, which is based on the attempt to
implement a human way of thinking adapted to logical games. A human player
rarely or almost never evaluates a given position precisely. In many cases, the
selection process is limited to rejecting less promising nodes and making certain that
the selected option is better than others. The important moment is that we are not
interested in the exact position evaluation but in the node which guarantees the
highest outcome.

Let the given problem be explained in details.
We could look at our game tree from a relative perspective like “is this move

better or worse than some value X” (Fig. 2). At each level, we identify if a sub-tree
satisfies “greater or equal” criteria. So passing search algorithm, for instance, with
argument 5, we can obtain the information that the left branch has value less than 5
and the right branch has value greater or equal than 5. We do not know exact sub-
tree evaluation, but we have found the move, which leads to the best result.

In this case, different cut-offs are possible:
• at max level, if the evaluation is greater (or equal) than the search value;
• at min level, if the evaluation is less than the search value.

In the given example, reduced nodes are shown with dashed line. Comparing to
Fig. 1 it can be seen that not only more cut-offs are possible, but also pruning occurs
at higher level which results in better performance.

Fig. 2 Fuzzy best node approach

In this approach, the best/worst cases are the same as for alpha-beta pruning:
O(wd/2) for the best case as only one branch should be checked at cut-off level, and
O(wd) for worst case as all nodes should be checked (w is width, d is depth of the
tree). But in the presented approach, cut-offs are more often possible in general.

1 2 7 4 3 6 8 9 5 4

<5 ? ≥5 ≥5

<5 ≥5

≥5

√ √ Χ Χ Χ √ Χ √ Χ Χ

max

min

max

3. Fuzzy Approach

The author proposes a new approach, which is based on the attempt to
implement a human way of thinking adapted to logical games. A human player
rarely or almost never evaluates a given position precisely. In many cases, the
selection process is limited to rejecting less promising nodes and making certain that
the selected option is better than others. The important moment is that we are not
interested in the exact position evaluation but in the node which guarantees the
highest outcome.

Let the given problem be explained in details.
We could look at our game tree from a relative perspective like “is this move

better or worse than some value X” (). At each level, we identify if a sub
tree satisfies “greater or equal” criteria. So passing search algorithm, for instance,
with argument 5, we can obtain the information that the left branch has value less
than 5 and the right branch has value greater or equal than 5. We do not know exact
subtree evaluation, but we have found the move, which leads to the best result.

In this case, different cutoffs are possible
 at max level, if the evaluation is greater (or equal) than the search value;
 at min level, if the evaluation is less than the search value.

In the given example, reduced nodes are shown with dashed line. Comparing to
 it can be seen that not only more cutoffs are possible, but also pruning
occurs at higher level which results in better performance.

 Fuzzy best node approach

In this approach, the best/worst cases are the same as for alphabeta pruning
O(wd/2) for the best case as only one branch should be checked at cutoff level, and
O(wd) for worst case as all nodes should be checked ( is width,  is depth of the
tree). ut in the presented approach, cutoffs are more often possible in general.

1 2 7 4 3 6 8 9 5 4

<5 ? ≥5 ≥5

<5 ≥5

≥5

√ √

Χ

Χ

Χ

√

Χ

√

Χ

Χ

max

min

max

3 Fuzzy Approach

The author proposes a new approach, which is based on the attempt to
implement a human way of thinking adapted to logical games. A human player
rarely or almost never evaluates a given position precisely. In many cases, the
selection process is limited to rejecting less promising nodes and making certain that
the selected option is better than others. The important moment is that we are not
interested in the exact position evaluation but in the node which guarantees the
highest outcome.

Let the given problem be explained in details.
We could look at our game tree from a relative perspective like “is this move

better or worse than some value X” (Fig. 2). At each level, we identify if a sub-tree
satisfies “greater or equal” criteria. So passing search algorithm, for instance, with
argument 5, we can obtain the information that the left branch has value less than 5
and the right branch has value greater or equal than 5. We do not know exact sub-
tree evaluation, but we have found the move, which leads to the best result.

In this case, different cut-offs are possible:
• at max level, if the evaluation is greater (or equal) than the search value;
• at min level, if the evaluation is less than the search value.

In the given example, reduced nodes are shown with dashed line. Comparing to
Fig. 1 it can be seen that not only more cut-offs are possible, but also pruning occurs
at higher level which results in better performance.

Fig. 2 Fuzzy best node approach

In this approach, the best/worst cases are the same as for alpha-beta pruning:
O(wd/2) for the best case as only one branch should be checked at cut-off level, and
O(wd) for worst case as all nodes should be checked (w is width, d is depth of the
tree). But in the presented approach, cut-offs are more often possible in general.

1 2 7 4 3 6 8 9 5 4

<5 ? ≥5 ≥5

<5 ≥5

≥5

√ √ Χ Χ Χ √ Χ √ Χ Χ

max

min

max

94 Computer Science and Information Technologies

If we use geometric interpretation and put our sub-tree minimax values on
coordinate axis, then our task is to separate/divide branches so that only one branch
would have higher value than the test value. Fig. 3 illustrates our previous example.
Alpha-beta window is initially set to leaf node range α = 0, β = 10; then the
following test values are used X1, X2, X3. If value X2 is chosen, then the successful
separation is obtained after the first iteration – we know that the second sub-tree has
higher estimation. If values X1 or X3 are chosen, then no separation is possible at
this point – both values are on the same side of the test value. In this case, the
algorithm continues with reduced alpha-beta search window: 1) α = X1 in the first
case; or 2) β = X3 in the second.

Fig. 3 Geometric interpretation of separation in the fuzzified game tree search

In a game tree with three or more sub-trees, the algorithm workflow remains the

same. Our task is to separate sub-trees in a way that only one branch has higher
estimation than the test value. However, more cases are possible – 0, 1, 2, 3
branches fall in on one side of separation line. In this case, alpha-beta window is
reduced correspondingly and the algorithm proceeds with the next iteration.

Comparing to existing algorithms such as MTD(f) in order to work, it needs the
first guess as to where the minimax value will turn out to be. If you feed MTD(f) the
minimax value to start with, it will only do two passes, the bare minimum: one to
find an upper bound of value x, and one to find a lower bound of the same value.

In the presented algorithm, it is possible to find the best move with a single
iteration and we are not limited to the accurate first guess. For the presented
example, any value from interval 3..7 (inclusive) would apply.

4 Fuzzified Search Algorithm

Best Node Search (BNS) is a new game tree search algorithm based on the idea
described in the previous section. The main difference between the classical
approach and the proposed algorithm is that BNS does not require the knowledge of
the exact game tree minimax value to select a move. We only need to know which
sub-tree has higher estimation. By iteratively performing search attempts the
algorithm can obtain information about which branch has higher estimation without
knowing the exact value. So less information is required and, as a result, the best
move can be found faster – total number of searched nodes is smaller and total

α β

2 8

X2

X1 X3

If we use geometric interpretation and put our subtree minimax values on
coordinate axis, then our task is to separate/divide branches so that only one branch
would have higher value than the test value.   illustrates our previous
example. lphabeta window is initially set to leaf node range α = 0, β = 10; then the
following test values are used X1, X2, X3. If value X2 is chosen, then the successful
separation is obtained after the first iteration – we know that the second subtree has
higher estimation. If values X1 or X3 are chosen, then no separation is possible at
this point – both values are on the same side of the test value. In this case, the
algorithm continues with reduced alphabeta search window: 1) α = X1 in the first
case; or 2) β = X3 in the second.

 Geometric interpretation of separation in the fuzzified game tree search

In a game tree with three or more subtrees, the algorithm workflow remains the

same. ur task is to separate subtrees in a way that only one branch has higher
estimation than the test value. However, more cases are possible – 0, 1, 2, 3
branches fall in on one side of separation line. In this case, alphabeta window is
reduced correspondingly and the algorithm proceeds with the next iteration.

Comparing to existing algorithms such as MTD(f) in order to work, it needs the
first guess as to where the minimax value will turn out to be. If you feed MTD(f) the
minimax value to start with, it will only do two passes, the bare minimum: one to
find an upper bound of value x, and one to find a lower bound of the same value.

In the presented algorithm, it is possible to find the best move with a single
iteration and we are not limited to the accurate first guess. For the presented
example, any value from interval 3..7 (inclusive) would apply.

4. Fuzzified Search Algorithm

Best Node Search (BNS) is a new game tree search algorithm based on the idea
described in the previous section. The main difference between the classical
approach and the proposed algorithm is that BNS does not require the knowledge of
the exact game tree minimax value to select a move. We only need to know which
subtree has higher estimation. By iteratively performing search attempts the
algorithm can obtain information about which branch has higher estimation without
knowing the exact value. So less information is required and, as a result, the best
move can be found faster – total number of searched nodes is smaller and total

α β

2 8

X2

X1 X3

If we use geometric interpretation and put our sub-tree minimax values on
coordinate axis, then our task is to separate/divide branches so that only one branch
would have higher value than the test value. Fig. 3 illustrates our previous example.
Alpha-beta window is initially set to leaf node range α = 0, β = 10; then the
following test values are used X1, X2, X3. If value X2 is chosen, then the successful
separation is obtained after the first iteration – we know that the second sub-tree has
higher estimation. If values X1 or X3 are chosen, then no separation is possible at
this point – both values are on the same side of the test value. In this case, the
algorithm continues with reduced alpha-beta search window: 1) α = X1 in the first
case; or 2) β = X3 in the second.

Fig. 3 Geometric interpretation of separation in the fuzzified game tree search

In a game tree with three or more sub-trees, the algorithm workflow remains the

same. Our task is to separate sub-trees in a way that only one branch has higher
estimation than the test value. However, more cases are possible – 0, 1, 2, 3
branches fall in on one side of separation line. In this case, alpha-beta window is
reduced correspondingly and the algorithm proceeds with the next iteration.

Comparing to existing algorithms such as MTD(f) in order to work, it needs the
first guess as to where the minimax value will turn out to be. If you feed MTD(f) the
minimax value to start with, it will only do two passes, the bare minimum: one to
find an upper bound of value x, and one to find a lower bound of the same value.

In the presented algorithm, it is possible to find the best move with a single
iteration and we are not limited to the accurate first guess. For the presented
example, any value from interval 3..7 (inclusive) would apply.

4 Fuzzified Search Algorithm

Best Node Search (BNS) is a new game tree search algorithm based on the idea
described in the previous section. The main difference between the classical
approach and the proposed algorithm is that BNS does not require the knowledge of
the exact game tree minimax value to select a move. We only need to know which
sub-tree has higher estimation. By iteratively performing search attempts the
algorithm can obtain information about which branch has higher estimation without
knowing the exact value. So less information is required and, as a result, the best
move can be found faster – total number of searched nodes is smaller and total

α β

2 8

X2

X1 X3

95Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

algorithm execution time is reduced comparing to the algorithms based on the exact
game tree evaluation.

The presented algorithm uses a standard call of Alpha-Beta search with ‘zero
window’. The proposed implementation relies on the transposition tables but
variation without memory (transposition tables) usage is also possible. While
scanning a game tree, algorithm checks all sub-trees and returns node which leads to
the best result. In general, BNS is expected to be more efficient comparing to the
classical algorithms in terms of number of nodes checked as it does not obtain
additional information which is not required in many cases – the exact game tree
minimax value.

BNS algorithm is given in Fig. 4 which makes use of the following functions:
1. NextGuess() – returns next separation value tested by algorithm;
2. AlphaBeta() – alpha-beta search with Zero Window (Null Window)

performs a boolean test whether a move produces a worse or better score
than the passed value.

All sub-trees are tested with separation values (this information is stored in the
transposition tables and reused in subsequent iterations). If exactly one branch
exceeds test value, then the best node is found. If all branches have smaller
estimation, then the number of sub-trees that exceeds separation test value remains
the same, beta value is reduced. If several nodes exceed test value, then
subtreeCount is updated correspondingly, and alpha value is updated to test
value, and algorithm continues with the next iteration. If a single sub-tree that
exceeds test value cannot be found and alpha-beta range is reduced to 1, it means
that several sub-trees have the same estimation and we can choose any of them.

function BNS(node, α, β)
 subtreeCount := number of children of node
 do
 test := NextGuess(α, β, subtreeCount)
 betterCount := 0
 foreach child of node
 bestVal := -AlphaBeta(child, -test, -(test - 1))
 if bestVal ≥ test
 betterCount := betterCount + 1
 bestNode := child
 update number of sub-trees that exceeds separation
test value

 update alpha-beta range
 while not((β - α < 2) or (betterCount = 1))
 return bestNode

Fig. 4 The BNS algorithm

One of the main parts of this algorithm is the method NextGuess(α, β,

subtreeCount) which returns the next value to be checked by the algorithm. In
the simplest case, it could be a formula based on linear distribution – alpha-beta
range is proportionally divided into sections according to the sub-tree count:

NextGuess = α + (β - α) * (subtreeCount - 1) / subtreeCount;

96 Computer Science and Information Technologies

where alpha and beta are the lower and the upper bounds of the search window
respectively; subtreeCount is the number of sub-trees which satisfies the
previous test call (the branches that have higher estimation than the test value).
However, the best algorithm performance is achieved after its statistical training or
analytical game tree evaluation resulting in non-linear distributions. These methods
are described in the following chapters.

5 BNS Enhancement through Statistical Training

Some algorithms, such as MTD(f) benefit from accurate “first guess” – as to
where the minimax value will turn out to be. The better than first guess is, the more
efficient the algorithm will be, on average.

The BNS algorithm can greatly benefit from good separation value as well. The
better separation value is, the faster the best node will be found, on average. So self-
training becomes an important part of the BNS algorithm as it helps us to tune
separation test values used by algorithm during consecutive search attempts and
results in reduced search space and improved performance [12].

In this section, the author proposes a new multi-dimensional statistics approach
which is developed to work in conjunction with BNS algorithm.

It is possible to collect this statistics before the game starts analyzing multiple
test data or on-line during the game process reusing previous estimations.

Table 1
Game tree minimax value distribution over 1000 trees

Minimax
value

Tree
count

25 1

26 5

27 11

28 38

29 124

30 206

31 252

32 189

33 111

34 42

35 14

36 7

 1000

The statistical approach for finding initial value (first guess) can be
demonstrated in the following example. 1000 game trees were generated with fixed

where alpha and beta are the lower and the upper bounds of the search window
respectively; subtreeCount is the number of subtrees which satisfies the
previous test call (the branches that have higher estimation than the test value).
However, the best algorithm performance is achieved after its statistical training or
analytical game tree evaluation resulting in nonlinear distributions. These methods
are described in the following chapters.

5.  nancement trou tatistical Trainin

Some algorithms, such as MTD(f) benefit from accurate “first guess” – as to
where the minimax value will turn out to be. The better than first guess is, the more
efficient the algorithm will be, on average.

The BNS algorithm can greatly benefit from good separation value as well. The
better separation value is, the faster the best node will be found, on average. So self
training becomes an important part of the BNS algorithm as it helps us to tune
separation test values used by algorithm during consecutive search attempts and
results in reduced search space and improved performance [12].

In this section, the author proposes a new multidimensional statistics approach
which is developed to work in conjunction with BNS algorithm.

It is possible to collect this statistics before the game starts analyzing multiple
test data or online during the game process reusing previous estimations.


Game tree minimax value distribution over 1000 trees

Minimax
value

Tree
count

25 1

26 5

27 11

28 38

29 124

30 206

31 252

32 189

33 111

34 42

35 14

36 7

 1000

The statistical approach for finding initial value (first guess) can be
demonstrated in the following example. 1000 game trees were generated with fixed

0

50

100

150

200

250

300

25 26 27 28 29 30 31 32 33 34 35 36

Minimax value

where alpha and beta are the lower and the upper bounds of the search window
respectively; subtreeCount is the number of sub-trees which satisfies the
previous test call (the branches that have higher estimation than the test value).
However, the best algorithm performance is achieved after its statistical training or
analytical game tree evaluation resulting in non-linear distributions. These methods
are described in the following chapters.

5 BNS Enhancement through Statistical Training

Some algorithms, such as MTD(f) benefit from accurate “first guess” – as to
where the minimax value will turn out to be. The better than first guess is, the more
efficient the algorithm will be, on average.

The BNS algorithm can greatly benefit from good separation value as well. The
better separation value is, the faster the best node will be found, on average. So self-
training becomes an important part of the BNS algorithm as it helps us to tune
separation test values used by algorithm during consecutive search attempts and
results in reduced search space and improved performance [12].

In this section, the author proposes a new multi-dimensional statistics approach
which is developed to work in conjunction with BNS algorithm.

It is possible to collect this statistics before the game starts analyzing multiple
test data or on-line during the game process reusing previous estimations.

Table 1
Game tree minimax value distribution over 1000 trees

Minimax
value

Tree
count

25 1

26 5

27 11

28 38

29 124

30 206

31 252

32 189

33 111

34 42

35 14

36 7

 1000

The statistical approach for finding initial value (first guess) can be
demonstrated in the following example. 1000 game trees were generated with fixed

97Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

structure and randomly assigned values for leaf nodes in a specific range (for given
example, the following values were used – width 2, depth 14, leaf node values are in
interval [0; 80]). For these game trees, statistics was collected and results are shown
in Table 1

It can be seen that there are 252 trees with minimax value 31 and there is only
one tree out of one thousand with minimax value 25. These statistics results are
used, for example, to determine the first guess in MTD(f) algorithm, and in all tests
it was called with argument f = 31 showing its best results.

However, this information does not provide additional benefits. So new
approach is proposed – single-dimension statistics is extended into two-dimension
statistics meaning collecting all possible pair info – for each sub-tree in our binary
tree. As a result, we have a matrix showing a number of trees having respectively
one sub-tree value (columns) and other sub-tree value (rows) – Table 2 Due to
symmetry reasons (according to the main diagonal) one half is shown. Tree count
column has summed up matrix values in the row resulting in the previous single-
dimension statistics (Table 1).

It can be seen that there are 78 trees which have sub-trees correspondingly with
branch values 31 and 29 (in this case, tree minimax value is 31).

Table 2

Two dimensional game sub-tree distribution over 1000 trees

 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Tree

count
23 0 0
24 0 0 0
25 0 1 0 1
26 0 0 2 3 5
27 0 0 5 3 3 11
28 0 1 0 12 12 13 38
29 0 0 2 10 35 43 34 124
30 1 2 6 9 26 58 71 33 206
31 0 0 6 10 27 41 78 57 33 252
32 0 1 3 13 17 30 32 41 38 14 189
33 0 0 1 2 8 12 26 28 21 11 2 111
34 0 0 0 1 3 5 13 8 6 2 2 2 42
35 0 0 0 0 0 2 4 3 2 3 0 0 0 14
36 0 0 0 0 0 0 1 2 2 1 1 0 0 0 7

 1000

BNS algorithm divides search interval into parts and verifies if sub-tree values

stay in different parts or not. If one branch value is less than separation value and
another branch value is higher, then algorithm immediately returns better move and
stops its work. If the branch values lay in the same part, then the interval is reduced
and the algorithm continues with an updated alpha-beta window. So, the algorithm

98 Computer Science and Information Technologies

becomes more efficient with the accurate first guess when the most of the game trees
get separated into parts after the first iteration.

The grayed-out rectangle in Table 2 gives us separation distribution for X = 30.
All marked cells represent trees with one branch greater or equal than 30 (by row)
and the other branch less than 30 (by column). It means that all these trees will be
separated into parts after the first iteration. To calculate the number of trees for
separation value X = 30, we need to sum up all the marked cells. For the given
example, 509 trees will get separated.

So, to find such value X when the highest number of trees will be divided, we
need to build remaining rectangles along the main diagonal for each X value and
sum up the cells bounded by X along axis as it is done in the previous example. The
resulting table is shown in Table 3

As it can be seen from Table 3, the best results are given with X = 30, meaning
that if we call BNS algorithm with argument 30, then 509 game trees will be divided
into two parts and the best node will already be found after the first iteration. So
trained BNS is more efficient and if we continue this idea we can find the best X
value for the second, third etc. iteration, until the best node is found.

Table 3
Statistical sub-tree separation over 1000 trees

Separation
value

Tree
count

23 0

24 1

25 6

26 30

27 88

28 208

29 374

30 509

31 475

32 325

33 167

34 61

35 21

36 7

 2272

Note: the total count of the game trees is higher than 1000 as many values are

overlapping – the same X value could divide different trees and the same tree could
be divided by different X values.

99Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

If we take a look at the tree with branching factor 3, we can apply similar
techniques for finding the best separation value. In this case, we have triplets [x, y,
z] defining minimax value of each sub-trees, so we can build corresponding 3D
matrix displaying the total number of the game trees with the given triplet.

While searching this matrix, we look for such separation value X, so one sub-
tree would be greater or equal with X, and two other sub-trees would have smaller
estimation. And, therefore, we maximize the number of trees which would be
separated after the first method call, so the best move is found after the first
iteration.

6 Game Tree Analytical Evaluation

In the previous chapter (BNS enhancement through self-training), statistical
analysis, which can improve BNS algorithm performance by calculating and
applying “good” separation values, was discussed. Therefore, in the development of
this idea, the author offers a new approach which is based on fully analytical
determination of best successful separation value generally for any type of tree with
various structures (alpha-beta range, tree width, depth, etc).

As it was stated before, we use abstract domain search in our experiments –
meaning tree generation with fixed structure (width / depth) and randomly assigning
leaf values based on uniform distribution within a given range.

In Fig. 5, leaf nodes are noted as probabilistic function FX. Here, our task is to
calculate resulting function starting from the lowest level (leaf nodes) up to the top
level (root node).

Fig. 5 Application of probabilistic function to maximum and

minimum levels

In this case, the following functions demonstrate the behavior of leaf nodes:
• Probability density function describes the relative likelihood for this

random variable to occur at a given point. For our example (leaf node
values are in interval [0; 80]), this likelihood is given in Fig. 6;

• Cumulative distribution function describes the probability that a real-
valued random variable X with a given probability distribution will be

FX FX FX FX

Fmin

Fmax

100 Computer Science and Information Technologies

found at a value less than or equal to X. For our example, it is given in
Fig. 7.

Fig. 6 Probability density

Fig. 7 Cumulative distribution

To calculate probabilistic values correspondingly at maximum and minimum
levels, the author proposes the following formulas which are applicable for binary
tree (square of probabilistic function) – for max level, it is probability that both sub-
trees are less than our cumulative distribution function; for min level, that not both
elements are greater than our cumulative distribution function:

 (1)

 (2)

For trees with larger branching factor, the following general formula should be
used, where w is the width of the tree:

 (3)

 (4)

Correspondingly, if we apply this formula to our example with binary tree with
leaf nodes in the given range [0..80], we receive the following equations:

 (5)

 (6)

By using these formulas we can build up the following matrix (Table 4) with
iteration results and iteration values for each minimum and maximum level up to
level of depth 14 (actually, we start from the lowest level with leaf nodes and go up
to the highest level – the root node).

 Probability density

 Cumulative distribution

To calculate probabilistic values correspondingly at maximum and minimum
levels, the author proposes the following formulas which are applicable for binary
tree (square of probabilistic function) – for max level, it is probability that both sub
trees are less than our cumulative distribution function; for min level, that not both
elements are greater than our cumulative distribution function:

  =  (1)

 = 1 − 1 −  (2)

For trees with larger branching factor, the following general formula should be
used, where  is the width of the tree:

 =  (3)

 = 1 − 1 −  (4)

Correspondingly, if we apply this formula to our example with binary tree with
leaf nodes in the given range [0..80], we receive the following equations:

 =  


 (5)

 = 1 − 1 − 


 (6)

By using these formulas we can build up the following matrix () with
iteration results and iteration values for each minimum and maximum level up to
level of depth 14 (actually, we start from the lowest level with leaf nodes and go up
to the highest level – the root node).

0

0,005

0,01

0,015

1 9 1725334149576573
Leaf values

0

0,5

1

1 9 17 25 33 41 49 57 65 73
Leaf values

101Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

Table 4
Calculated cumulative distribution for binary tree with leaf node

values from interval [0; 80] and depth 14

Level
Leaf values

1 – min 2 – max 3 – min … 14 – max

x Fx 1-(1-Fx)2 (Fx)2 1-(1-Fx)2 … (Fx)2

1 1 / 80 0,02484375 0,00061721 0,00123404 … 0

2 2 / 80 0,049375 0,00243789 0,00486984 … 0

3 3 / 80 0,07359375 0,00541604 0,01080275 … 0

… … … … … … …

80 80 / 80 1 1 1 … 1

Fig. 8 demonstrates the progress of cumulative probability function bottom up

changing its slope and coming nearer to vertical. Correspondingly, the transformed
probability density function is displayed in Fig. 9 with higher and higher peaks at
each next level where the highest peak corresponds to level 14.

Fig. 8 Cumulative probability function by level for depth 14


Calculated cumulative distribution for binary tree with leaf

node values from interval [0; 80] and depth 14




1 – min 2 – max 3 – min … 14 – max

  11)2 2 11)2 … 2

1 1 / 80 0,02484375 0,00061721 0,00123404 … 0

2 2 / 80 0,049375 0,00243789 0,00486984 … 0

3 3 / 80 0,07359375 0,00541604 0,01080275 … 0

… … … … … … …

80 80 / 80 1 1 1 … 1

 demonstrates the progress of cumulative probability function bottom

up changing its slope and coming nearer to vertical. Correspondingly, the
transformed probability density function is displayed in   with higher and
higher peaks at each next level where the highest peak corresponds to level 14.

 Cumulative probability function by level for depth 14

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

Game Tree Minimax Value

1 min

2 max

3 min

4 max

5 min

6 max

7 min

8 max

9 min

10 max

11 min

12 max

13 min

14 max

Table 4
Calculated cumulative distribution for binary tree with leaf node

values from interval [0; 80] and depth 14

Level
Leaf values

1 – min 2 – max 3 – min … 14 – max

x Fx 1-(1-Fx)2 (Fx)2 1-(1-Fx)2 … (Fx)2

1 1 / 80 0,02484375 0,00061721 0,00123404 … 0

2 2 / 80 0,049375 0,00243789 0,00486984 … 0

3 3 / 80 0,07359375 0,00541604 0,01080275 … 0

… … … … … … …

80 80 / 80 1 1 1 … 1

Fig. 8 demonstrates the progress of cumulative probability function bottom up

changing its slope and coming nearer to vertical. Correspondingly, the transformed
probability density function is displayed in Fig. 9 with higher and higher peaks at
each next level where the highest peak corresponds to level 14.

Fig. 8 Cumulative probability function by level for depth 14

102 Computer Science and Information Technologies

Probability density function by level for depth 14

In the conducted experiments, statistical information is collected to prove the

correctness of analytical game tree evaluation. The difference between analytically
received data and statistical experiments is shown in  . The error rate is
relatively low meaning that analytical estimation is really close to experimentally
received results.

 Error function between analytical estimation and

experimentally received results

0

0,05

0,1

0,15

0,2

0,25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

Game Tree Minimax Value

1 min

2 max

3 min

4 max

5 min

6 max

7 min

8 max

9 min

10 max

11 min

12 max

13 min

14 max

-0,004

-0,003

-0,002

-0,001

0

0,001

0,002

0,003

0,004

1 4 7 101316192225283134374043464952555861646770737679

Game Tree Minimax Value

Probability density function by level for depth 14

In the conducted experiments, statistical information is collected to prove the

correctness of analytical game tree evaluation. The difference between analytically
received data and statistical experiments is shown in  . The error rate is
relatively low meaning that analytical estimation is really close to experimentally
received results.

 Error function between analytical estimation and

experimentally received results

0

0,05

0,1

0,15

0,2

0,25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82

Game Tree Minimax Value

1 min

2 max

3 min

4 max

5 min

6 max

7 min

8 max

9 min

10 max

11 min

12 max

13 min

14 max

-0,004

-0,003

-0,002

-0,001

0

0,001

0,002

0,003

0,004

1 4 7 101316192225283134374043464952555861646770737679

Game Tree Minimax Value

Fig. 9 Probability density function by level for depth 14

In the conducted experiments, statistical information is collected to prove the

correctness of analytical game tree evaluation. The difference between analytically
received data and statistical experiments is shown in Fig. 10. The error rate is
relatively low meaning that analytical estimation is really close to experimentally
received results.

Fig. 10 Error function between analytical estimation and experimentally

received results

Fig. 9 Probability density function by level for depth 14

In the conducted experiments, statistical information is collected to prove the

correctness of analytical game tree evaluation. The difference between analytically
received data and statistical experiments is shown in Fig. 10. The error rate is
relatively low meaning that analytical estimation is really close to experimentally
received results.

Fig. 10 Error function between analytical estimation and experimentally

received results

103Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

Resulting probability density function is given in Fig. 11. These results
correspond to the statistically received results in previous section.

Fig. 11 Resulting zoomed-in function

Given the probability density function we can predict the most probabilistic

outcome of the game tree. Thus, we can choose the best separation value for our
BNS algorithm – such value X that the greatest number of trees will be separated /
divided after the first iteration of the algorithm.

These are the same values as in statistical evaluation we have been used before,
except that analytically we could improve precision and make calculations much
faster without performing long-running experiments.

We are querying our tree with some separation value X. So, given density
function, we can calculate probability, that the tree value is less than our test value,
or the tree value is greater. So, our task is to maximize our chances to separate tree
with the given value X.

The entropy, H, of a discrete random variable X is a measure of the amount of
uncertainty associated with the value of X.

Having probabilistic outcome when tree is separated with probability P, and its

counterpart outcome when tree is not separated with probability 1-P, results in
Binary entropy function, Hb. The entropy is maximized at 1 bit per trial when the
two possible outcomes are equally probable, as in an unbiased coin toss.

Resulting probability density function is given in  . These results
correspond to the statistically received results in previous section.

 Resulting zoomedin function

Given the probability density function we can predict the most probabilistic

outcome of the game tree. Thus, we can choose the best separation value for our
BNS algorithm – such value X that the greatest number of trees will be separated /
divided after the first iteration of the algorithm.

These are the same values as in statistical evaluation we have been used before,
except that analytically we could improve precision and make calculations much
faster without performing longrunning experiments.

We are querying our tree with some separation value X. So, given density
function, we can calculate probability, that the tree value is less than our test value,
or the tree value is greater. So, our task is to maximize our chances to separate tree
with the given value X.

The entropy, H, of a discrete random variable X is a measure of the amount of
uncertainty associated with the value of X.

       




Having probabilistic outcome when tree is separated with probability P, and its

counterpart outcome when tree is not separated with probability 1P, results in
Binary entropy function, Hb. The entropy is maximized at 1 bit per trial when the
two possible outcomes are equally probable, as in an unbiased coin toss.

             

0

0,05

0,1

0,15

0,2

0,25

26 27 28 29 30 31 32 33 34 35 36 37 38

Game Tree Minimax Value

Resulting probability density function is given in  . These results
correspond to the statistically received results in previous section.

 Resulting zoomedin function

Given the probability density function we can predict the most probabilistic

outcome of the game tree. Thus, we can choose the best separation value for our
BNS algorithm – such value X that the greatest number of trees will be separated /
divided after the first iteration of the algorithm.

These are the same values as in statistical evaluation we have been used before,
except that analytically we could improve precision and make calculations much
faster without performing longrunning experiments.

We are querying our tree with some separation value X. So, given density
function, we can calculate probability, that the tree value is less than our test value,
or the tree value is greater. So, our task is to maximize our chances to separate tree
with the given value X.

The entropy, H, of a discrete random variable X is a measure of the amount of
uncertainty associated with the value of X.

       




Having probabilistic outcome when tree is separated with probability P, and its

counterpart outcome when tree is not separated with probability 1P, results in
Binary entropy function, Hb. The entropy is maximized at 1 bit per trial when the
two possible outcomes are equally probable, as in an unbiased coin toss.

             

0

0,05

0,1

0,15

0,2

0,25

26 27 28 29 30 31 32 33 34 35 36 37 38

Game Tree Minimax Value

Resulting probability density function is given in Fig. 11. These results
correspond to the statistically received results in previous section.

Fig. 11 Resulting zoomed-in function

Given the probability density function we can predict the most probabilistic

outcome of the game tree. Thus, we can choose the best separation value for our
BNS algorithm – such value X that the greatest number of trees will be separated /
divided after the first iteration of the algorithm.

These are the same values as in statistical evaluation we have been used before,
except that analytically we could improve precision and make calculations much
faster without performing long-running experiments.

We are querying our tree with some separation value X. So, given density
function, we can calculate probability, that the tree value is less than our test value,
or the tree value is greater. So, our task is to maximize our chances to separate tree
with the given value X.

The entropy, H, of a discrete random variable X is a measure of the amount of
uncertainty associated with the value of X.

Having probabilistic outcome when tree is separated with probability P, and its

counterpart outcome when tree is not separated with probability 1-P, results in
Binary entropy function, Hb. The entropy is maximized at 1 bit per trial when the
two possible outcomes are equally probable, as in an unbiased coin toss.

104 Computer Science and Information Technologies

So, we should find such separation value that maximizes amount of information
received after querying the tree. For the first iteration, we receive value 30. For the
second iteration, we do the same way – if separation is not obtained after the first
query, that means all sub-trees are either less (fall down) or greater (fall up). So, we
chose the next separation value in the given range maximizing probability of
successful separation. Correspondingly, the separation values for the second
iteration are 29 and 31 respectively.

In Fig. 12, separation value X1 is shown for the first iteration. If no successful
separation is obtained after the first query, then we use the next group of separation
values X2 going to the left or to the right.

Fig. 12 Separation usage by resulting density function

Similarly, we seek for separation values for the third, the fourth etc. iterations

until the best value is found. At each step, we reduce alpha-beta window. This
process is similar to binary search, except for the selection separation coefficients
where we use probability density function.

7 Experimental Results

More than 10 algorithms were implemented and over 40000 test runs were
conducted during this research. Both versions with transposition tables and without
them were used in our setup.

These algorithms were tested in an abstract domain – generating the game tree
test set with fixed structure (width / depth) and randomly assigning leaf node values
from the given range. Then, these experiments extended to trees with a different
branching factor starting from 2 to 5 and full alpha-beta window (not limited range
[-infinity, +infinity]).

All the algorithms were run on the same game tree test set (each consisting of
10000 generated samples) to compare algorithm efficiency under the same

X2 X1 X2

So, we should find such separation value that maximizes amount of information
received after querying the tree. For the first iteration, we receive value 30. For the
second iteration, we do the same way – if separation is not obtained after the first
query, that means all subtrees are either less (fall down) or greater (fall up). So, we
chose the next separation value in the given range maximizing probability of
successful separation. Correspondingly, the separation values for the second
iteration are 29 and 31 respectively.

In , separation value X1 is shown for the first iteration. If no successful
separation is obtained after the first query, then we use the next group of separation
values X2 going to the left or to the right.

 Separation usage by resulting density function

Similarly, we seek for separation values for the third, the fourth etc. iterations

until the best value is found. At each step, we reduce alphabeta window. This
process is similar to binary search, except for the selection separation coefficients
where we use probability density function.

7. Experimental Results

More than 10 algorithms were implemented and over 40000 test runs were
conducted during this research. Both versions with transposition tables and without
them were used in our setup.

These algorithms were tested in an abstract domain – generating the game tree
test set with fixed structure (width / depth) and randomly assigning leaf node values
from the given range. Then, these experiments extended to trees with a different
branching factor starting from 2 to 5 and full alphabeta window (not limited range
infinity, infinity).

All the algorithms were run on the same game tree test set (each consisting of
10000 generated samples) to compare algorithm efficiency under the same

0

0,05

0,1

0,15

0,2

0,25

26 27 28 29 30 31 32 33 34 35 36 37 38

Game Tree Minimax Value

X2 X1 X2

So, we should find such separation value that maximizes amount of information
received after querying the tree. For the first iteration, we receive value 30. For the
second iteration, we do the same way – if separation is not obtained after the first
query, that means all sub-trees are either less (fall down) or greater (fall up). So, we
chose the next separation value in the given range maximizing probability of
successful separation. Correspondingly, the separation values for the second
iteration are 29 and 31 respectively.

In Fig. 12, separation value X1 is shown for the first iteration. If no successful
separation is obtained after the first query, then we use the next group of separation
values X2 going to the left or to the right.

Fig. 12 Separation usage by resulting density function

Similarly, we seek for separation values for the third, the fourth etc. iterations

until the best value is found. At each step, we reduce alpha-beta window. This
process is similar to binary search, except for the selection separation coefficients
where we use probability density function.

7 Experimental Results

More than 10 algorithms were implemented and over 40000 test runs were
conducted during this research. Both versions with transposition tables and without
them were used in our setup.

These algorithms were tested in an abstract domain – generating the game tree
test set with fixed structure (width / depth) and randomly assigning leaf node values
from the given range. Then, these experiments extended to trees with a different
branching factor starting from 2 to 5 and full alpha-beta window (not limited range
[-infinity, +infinity]).

All the algorithms were run on the same game tree test set (each consisting of
10000 generated samples) to compare algorithm efficiency under the same

X2 X1 X2

105Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

conditions. For each algorithm, visited leaf nodes count (evaluation function call)
and total visited node count was measured and average count per tree was
calculated. In most cases, the first parameter is more important as in real games
evaluation functions are usually complex enough and require some computing
resources. The second parameter is usually less important but for some algorithms
total node count increases dramatically and should be considered while comparing
algorithm efficiency. In the algorithms with reiterative techniques based on
transposition tables when node is visited multiple times, the total node count is
increased and leaf node count remains the same as this info is stored in TT.

In the chart in Fig. 13, MTDF performance is taken as the base point (treated as
100%) and the performance of other algorithms is measured as a ratio to it, so a
result greater than 100% means larger number of search iterations and respectively
only BNS was able to show results less than 100%. It is a combined graph showing
trends increasing width of the search tree – from binary tree to a tree with 5-width
structure at each node. In this section, number of visited leaf nodes is counted.

Fig. 13 Algorithm relative performance across different tree widths

(leaf nodes visited)

BNS algorithm shows progress from 88% at 2-width stage to 96% at 5-width

stage.
Fig. 14 demonstrates the same data slice, but here, the total number of visited

nodes is measured. It can be seen that BNS performance still remains at the level of
approximately 80% comparing to MTDF algorithm across all branching factors.
Note: SSS and Dual algorithms show low results of 700% and 300%
correspondingly and fall outside of diagram range.

conditions. For each algorithm, visited leaf nodes count (evaluation function call)
and total visited node count was measured and average count per tree was
calculated. In most cases, the first parameter is more important as in real games
evaluation functions are usually complex enough and require some computing
resources. The second parameter is usually less important but for some algorithms
total node count increases dramatically and should be considered while comparing
algorithm efficiency. In the algorithms with reiterative techniques based on
transposition tables when node is visited multiple times, the total node count is
increased and leaf node count remains the same as this info is stored in TT.

In the chart in , MTDF performance is taken as the base point (treated
as 100%) and the performance of other algorithms is measured as a ratio to it, so a
result greater than 100% means larger number of search iterations and respectively
only BNS was able to show results less than 100%. It is a combined graph showing
trends increasing width of the search tree – from binary tree to a tree with width
structure at each node. In this section, number of visited leaf nodes is counted.

 Algorithm relative performance across different tree widths

(leaf nodes visited)

BNS algorithm shows progress from 88% at width stage to % at width

stage.
 demonstrates the same data slice, but here, the total number of visited

nodes is measured. It can be seen that BNS performance still remains at the level of
approximately 80% comparing to MTDF algorithm across all branching factors.
Note: SSS and Dual algorithms show low results of 700% and 300%
correspondingly and fall outside of diagram range.

60%

80%

100%

120%

140%

160%

180%

2-width 3-width 4-width 5-width

AlphaBeta

NegaScout

SSS

Dual

NegaC

MTDF

BNS

conditions. For each algorithm, visited leaf nodes count (evaluation function call)
and total visited node count was measured and average count per tree was
calculated. In most cases, the first parameter is more important as in real games
evaluation functions are usually complex enough and require some computing
resources. The second parameter is usually less important but for some algorithms
total node count increases dramatically and should be considered while comparing
algorithm efficiency. In the algorithms with reiterative techniques based on
transposition tables when node is visited multiple times, the total node count is
increased and leaf node count remains the same as this info is stored in TT.

In the chart in Fig. 13, MTDF performance is taken as the base point (treated as
100%) and the performance of other algorithms is measured as a ratio to it, so a
result greater than 100% means larger number of search iterations and respectively
only BNS was able to show results less than 100%. It is a combined graph showing
trends increasing width of the search tree – from binary tree to a tree with 5-width
structure at each node. In this section, number of visited leaf nodes is counted.

Fig. 13 Algorithm relative performance across different tree widths

(leaf nodes visited)

BNS algorithm shows progress from 88% at 2-width stage to 96% at 5-width

stage.
Fig. 14 demonstrates the same data slice, but here, the total number of visited

nodes is measured. It can be seen that BNS performance still remains at the level of
approximately 80% comparing to MTDF algorithm across all branching factors.
Note: SSS and Dual algorithms show low results of 700% and 300%
correspondingly and fall outside of diagram range.

106 Computer Science and Information Technologies

Fig. 14 Algorithm relative performance across different tree widths

(total nodes visited)

8 Conclusions and Future Work

The main goal of this paper was to show that it is possible to find the best move
without the exact tree minimax value. After self-training based on multi-dimension
statistics, the proposed BNS algorithm was able to demonstrate better results than
other existing algorithms. Game tree analytical evaluation gives additional
improvement allowing us to use this algorithm as general purpose approach for
different tree types.

Having analyzed the results we can conclude the following:
• Among algorithms without Transposition Tables (TT) BNS shows

competitive results. Both leaf node count and total node count is less
comparing to other algorithms;

• The algorithms based on TT approach show different performance in
different conditions. Currently, MTD(f) is more preferable choice
providing the highest performance. But in the current experiments, BNS
demonstrated itself to be more efficient comparing both scanned leaf node
count and total node count;

• Considering leaf nodes visited, BNS algorithm demonstrates an
improvement in a range from 12% (for binary trees) to 4% (for 5-width
trees) comparing to MTD(f);

• Regarding total nodes visited, BNS algorithm demonstrates a stable
improvement up to 20% across different branching factors comparing to
MTD(f);

The current results are based on experiments in abstract domain and additional
research is needed to verify the behavior of the algorithm for wider trees (with

 Algorithm relative performance across different tree widths

(total nodes visited)

8. Conclusions and Future Work

The main goal of this paper was to show that it is possible to find the best move
without the exact tree minimax value. After selftraining based on multidimension
statistics, the proposed BNS algorithm was able to demonstrate better results than
other existing algorithms. Game tree analytical evaluation gives additional
improvement allowing us to use this algorithm as general purpose approach for
different tree types.

Having analyzed the results we can conclude the following:
 Among algorithms without Transposition Tables (TT) BNS shows

competitive results. Both leaf node count and total node count is less
comparing to other algorithms;

 The algorithms based on TT approach show different performance in
different conditions. Currently, MTD(f) is more preferable choice
providing the highest performance. But in the current experiments, BNS
demonstrated itself to be more efficient comparing both scanned leaf node
count and total node count;

 Considering leaf nodes visited, BNS algorithm demonstrates an
improvement in a range from 12% (for binary trees) to % (for width
trees) comparing to MTD(f);

 Regarding total nodes visited, BNS algorithm demonstrates a stable
improvement up to 20% across different branching factors comparing to
MTD(f);

40%

60%

80%

100%

120%

140%

160%

180%

2-width 3-width 4-width 5-width

AlphaBeta

NegaScout

SSS

Dual

NegaC

MTDF

BNS

107Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

branch factor larger than 15-20). Interesting results may be obtained in testing non-
regular trees with asymmetrical structure. Future experiments should also consider
analyzing algorithm performance in real games, but it is believable that proposed
approach could be successfully applied for real domain games as well.

9 Acknowledgments

The author would like to thank Nikolajs Nahimovs for valuable ideas in the field

of game tree analytical evaluation.

References

1. T. A. Marsland, M. Campbell. Parallel Search of Strongly Ordered Game Trees. ACM Comput.

Surv., 1982
2. Judea Pearl. The solution for the branching factor of the alpha-beta pruning algorithm and its

optimality. Communications of the ACM, 1982
3. Reinefeld, A. An Improvement to the Scout Tree-Search Algorithm. ICCA Journal, 1983, Vol. 6,

No. 4, pp. 4-14
4. A. Reinefeld. Spielbaum-Suchverfahren. Informatik-Fachbericht 200, Springer-Verlag, 1989
5. Jean Christophe Weill. The NegaC* search. ICCA Journal, March 1992
6. Plaat, A., Schaeffer, J., Pijls, W., and Bruin, A. de. A New Paradigm for Minimax Search, Technical

Report EUR-CS-95-03, 1994
7. Plaat, A., Schaeffer, J., Pijls, W., and Bruin, A. de. Best-First and Depth-First Minimax Search in

Practice, Proceedings of Computing Science in the Netherlands, 1995
8. Plaat, A., Schaeffer, J., Pijls, W., and Bruin, A. de. An Algorithm Faster than NegaScout and SSS*

in Practice, Computer Strategy Game Programming Workshop at the World Computer Chess
Championship, 1995

9. Plaat, A., Schaeffer, J., Pijls, W., and Bruin, A. de. Best-First Fixed-Depth Minimax Algorithms,
Artificial Intelligence, volume 87, 1996

10. Yngvi Björnsson. Selective Depth-First Game-Tree Search. Ph.D. thesis, University of Alberta,
2002

11. Russell, Stuart J.; Norvig, Peter, Artificial Intelligence: A Modern Approach (3rd ed.), Upper
Saddle River, New Jersey: Pearson Education, Inc., 2010

12. Dmitrijs Rutko, Fuzzified Algorithm for Game Tree Search. Second Brazilian Workshop of the
Game Theory Society, BWGT 2010

Appendix

The following section contains the performance results of algorithms

implemented during the current research for different tree structures and leaf node
ranges.

108 Computer Science and Information Technologies

Fig. 15 Tree width – 2, depth – 14

Leaf node range 0..80; full alpha-beta window

Fig. 16 Tree width – 2, depth – 14

Leaf node range 0..800; full alpha-beta window

109Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

Fig. 17 Tree width – 3, depth – 10

Leaf node range 0..80; full alpha-beta window

Fig. 18 Tree width – 3, depth – 10

Leaf node range 0..800; full alpha-beta window

110 Computer Science and Information Technologies

Fig. 19 Tree width – 4, depth – 8

Leaf node range 0..80; full alpha-beta window

Fig. 20 Tree width – 4, depth – 8

Leaf node range 0..800; full alpha-beta window

111Dmitrijs Rutko. Fuzzified Algorithm for Game Tree Search with Statistical and ..

Fig. 21 Tree width – 5, depth – 6

Leaf node range 0..80; full alpha-beta window

Fig. 22 Tree width – 5, depth – 6

Leaf node range 0..800; full alpha-beta window

Computer Scientists as Early Digital Artists

Solvita Zariņa
Institute of Mathematics and Computer Science, University of Latvia

29 Raina blvd., Riga, LV-1459, Latvia
 solvita.zarina@lumii.lv

Computer graphics and early computer art are practically of the same age as computers. Since
the moment when graphical output devices became available people started to use them for
experiments in art. This paper attempts to analyze the early computer art in context of its authors’
opinions. There are outstanding examples of collaboration between computer scientists, software
programmers and 20th century artists. Some recent media art events in Latvia are mentioned from
this viewpoint.

Keywords: computer graphics, computer art, digital art.

1 Introduction
The first visual examples created by using an analogue computer appeared in the

mid-1950s in the United States and Germany. We can find some experiments with
oscilloscope images even before the stage of electronic graphics. The point of interest is
why anybody dares to call these pieces the art. We can prove it from the viewpoint of the
history of art of the 20th century. Art forms, such as cubism, Dada, futurism, naïve art,
primitivism, constructivism, suprematism and kinetic art, had already emerged before
and were widely considered to be the art forms in the middle of the century. Abstract
expressionism was one of the major stylistic approaches in the US at that time. Therefore,
three things characterising the first examples of computer art are: art as a process not
only as a result (Dada), non-professional artists (naïve and primitive art) and abstract,
non-representative art forms (suprematism, constructivism, abstractionism) have been
already accepted by art theoreticians, gallery and museum curators, as well as by general
public in the Western world.

The first authors of the computer images are mathematicians, computer scientists and
engineers. It seems to be self-understandable considering the availability of computer
time being extremely expensive at that time and necessity for high-level technical skills.
It has to be mentioned that the first computer artists had their own theoretical viewpoint
on the style and aesthetics of their newly created art form.

Solvita Zariņa
Computer Scientists as Early Digital Artists

Scientific Papers, University of Latvia, 2011. Vol. 770
Computer Science and Information Technologies	 112–123 P.

113Solvita Zariņa. Computer Scientists as Early Digital Artists

Almost ten years later, the informal communities consisting of professional artists
(visual artists, as well as musicians, filmmakers, etc.) of the one part and scientists,
engineers of the other part began to spread out in order to combine the creative potential
of art with computer technologies. Some well-known examples of cooperation in
such countries as the United States, Japan and the United Kingdom will be analyzed.
Despite the political system and official politics in Soviet Latvia, some kinetic and
even conceptual art examples emerged in 1970ties. They were often marked as design
proposals and implemented in cooperation with engineers and programmers.

The very first examples of computer drawings in Soviet Latvia can be found in the
late 1960s. Undoubtedly, this had been made possible thanks to the appearance of better
output devices and more appropriate printing possibilities for graphics. The political
background dictates a completely different approach to the style and aesthetics of this
art form. Nobody, including the authors of computer drawings, accepted them as art.
They are anonymous, and only a very small part of them has survived till nowadays.

Nevertheless, in the Soviet Union, particularly in Soviet Russia, papers covering the
topics of computer aesthetics and computer music appeared in the 1970s and 1980s.

After 1990, new media art (now computer art is often a part of it) began to develop
in Latvia. Some Latvian contemporary artists had successful cooperation with our
computer scientists and physicists in developing their art projects.

2 Computer Graphics and Computer Art Pioneers
The term “computer art” was coined in BOEING Company by its designer William

Fetter (1928-2002) who first used it in 1960 to describe his 3D renditions (computer-
generated orthographic view) of aircraft cockpits and pilots.

Benjamin Francis Laposky (1914-2000) is being considered as a pioneer of
computer art. Shortly after World War II, he began working with oscilloscopes due to his
longstanding interest in geometry, curves and Lissajous figures. At the very beginning,
he even did not use a computer in his artworks which he called “Oscillons”. We can
note his works as some kind of predecessors to the computer art because of the use
of algorithmic signals to control artwork producing devices. In 1950, Laposky used
a cathode ray oscilloscope with sine wave generators and various other electrical and
electronic circuits to create abstract art.

“My work in computer art is a form of oscillography, the results of which I have
called ‘Oscillons’ or ‘Electronic Abstractions.’ These are composed of combinations of
basic electronic wave forms as displayed on a cathode ray oscilloscope and photographed.
Colour compositions are achieved by means of special filter arrangements. The resulting
art works are presented in photographic exhibitions, kinetic oscilloscope displays, light
boxes, or movies.

The relationship of the oscillons to computer art is that the basic waveforms are
analogue curves, of the type used in analogue computer systems. I got into oscillographic
art through a long-time interest in art or design derived from mathematics and physics.
I had worked with geometric design, analytic and other algebraic curves, ‘magic line’
patterns from magic number arrangements, harmonograph machine tracings, pendulum

114 Computer Science and Information Technologies

patterns, and so on. The oscilloscope seemed to me to be a way of getting a wider variety
of similar kinds of design and with controlled effects to produce even newer forms not
feasible with previous techniques.” [1]

His “Oscillons” was exhibited and published in America and abroad (over 216
exhibitions and 160 publications since 1952). The permanent collection of Laposky’s
artworks is to be found at the Sanford Museum, the United States.

Herbert W. Franke (1927) produced similar art work in Germany (Erlangen)
by creating “Lightforms” (in cooperation with Andreas Hübner, 1953-1955) and
“Oscillogramms” (1956). Unexpected coincidence of the time and a method used by
Laposky and Franke should be mentioned.

Herbert W. Franke studied physics, mathematics, chemistry, psychology and
philosophy in Vienna. He received his Ph.D. in Theoretical Physics in 1950 by writing a
dissertation about electron optics. In 1956, he started his experiments with oscilloscope-
type images, then – electronic graphics, and in 1969 – with computer art. He actively
used the new form of art throughout many years.

•	 “DRACULA Series”, 1970-1971, computer graphics based on “Dragon
Curves”, a fairly new discovered form of mathematical fractals.

•	 “Rotations, Projections”, 1970-1971, the images are based on interactively
controlled motions in a perspective view. This kind of animation sequences
was used in the “Laser” ballet which was performed on the experimental stage
of the Bavarian State Opera.

•	 “Colorraster 75”, 1975, an edition of the pictures was printed with one of the
first inkjet printers available in Europe.

•	 “Cascade”, 1978, live transformation of music into graphics: the underlying
program for the Apple II GS converts sounds in relation to the frequencies into
pictures.

•	 “Fourier-Transformations”, in cooperation with Horst Helbig, ca. 1979, the first
attempts with planar Fourier transformations already showed that it produced a
variety of shapes, which were not inferior to fractals.

•	 “Virtual Sculptures”, done with two software programs called “Mathematica”
and “Bryce”, after 1996. [2]

Franke became a cybernetic aesthetics and computer art lecturer of the University of
Munich (1973-1998), and in the Academy of Fine Arts in Munich (1984-1998). In 2008,
he was promoted to Senior Fellow by ‘Konrad-Zuse-Zentrum für Informationstechnik
Berlin’ (ZIB). His list of publications includes more than 40 books, especially about
art-science connections, and also science fiction novels. His second book, “Computer
Graphics – Computer Art” (first edition – Bruckmann, München, 1971, second edition –
Springer Verlag, Heidelberg, Berlin, New York, 1985), was the earliest comprehensive
text on the subject. The works are in the following collections: Abteiberg Museum
collection, ZKM, Kunsthalle Bremen, Germany, Victoria and Albert Museum, the United
Kingdom. A. Michael Noll (1939), Frieder Nake (1938) and Georg Nees (1926) came
as the ‘second generation’ of scientists – computer artists. Nake, Nees and Noll are
sometimes called the three capital ‘N’s, generally in the context of history of computer
art. Their artworks were often based on originally created algorithms.

115Solvita Zariņa. Computer Scientists as Early Digital Artists

Fig. 1 Random polygons. G. Nees “23 Vertices”, 1965; A.M. Noll “Vertical-Horizontal no. 3”,
1964; F. Nake “Random polygon”, 1965 (© G. Nees, © A. M. Noll, © F. Nake)

Besides being a pioneer in computer art and animation, A. Michael Noll has had
a varied career as a researcher at Bell Labs in such areas as the effects of media on
interpersonal communication, three-dimensional computer graphics and animation,
human-machine tactile communication, speech signal processing, cepstrum pitch
determination, and aesthetics. He was also a staff member of the White House Science
Advisor, AT&T manager and planner, academic professor and administrator, author,
columnist, classical music critic, and archivist and biographer.

In the late 1960s and early 1970s, Noll constructed interactive three-dimensional
input devices and displays and a three-dimensional, tactile, force-feedback (“feelie”)
device (US patent 3,919,691 “Tactile Man-Machine Communications System” filed
May 26, 1971, issued on November 1, 1975). This device was the forerunner of today’s
virtual reality systems. He was also one of the first researchers to demonstrate the
potential of raster scan displays for computer graphics. He was an early pioneer in the
creation of stereoscopic computer-animated movies of four-dimensional hyper-objects,
of a computer-generated ballet, and of computer-animated title sequences for TV and
film. [3]

He was very enthusiastic about creating computer simulations after Dutch painter
Piet Mondrian (“Composition with Lines”), English painter Bridget Riley (“Ninety
Parallel Sinusoids With Linearly Increasing Period”), as well as exploring mathematics
for artistic purposes (“Gaussian Quadratic”, “Hypercube Computer Animation”). Noll
was one of the first researchers to use a digital computer to create artistic patterns and
to formalize the use of random processes in the creation of visual arts. Noll as artist was
active till 1980.

Noll’s artworks are in permanent collections of the Museum of Modern Art, the Los
Angeles County Museum of Art, the USC Fisher Gallery, the Performing Arts Library
at Lincoln Centre, and the Academy of Motion Picture Arts and Sciences, the United
States and Victoria and Albert Museum, the United Kingdom.

116 Computer Science and Information Technologies

Frieder Nake is a professor of Computer Graphics at the Department of Computer
Science at the University of Bremen. In the early 1960s, his combined interests in
probability theory, information aesthetics, and software merged in generating computer
art. At first, he used the Graphomat Zuse Z 64 drawing machine to produce four-colour
plotter drawings, and later, he worked with computer Standard Electric ER 56. He was
active during the 1960s and 1970s working with compositions of abstract geometric
lines and shapes. His works are in the collection of the Victoria and Albert Museum, the
United Kingdom. Georg Nees is a professor at the University of Erlangen, Germany.
Nees studied mathematics, physics and philosophy in Erlangen and Stuttgart. In 1969,
he received his Ph.D. in “Generative Computer Graphics”. His academic advisor was
Max Bense (1910–1990), philosopher, mathematician and founder of Information
Aesthetics theory. Since 1964, Nees has been working with computer graphics,
sculptures and film – both producing and theorizing about it. His first artworks were
based on the programming language ALGOL and the Siemens computer system 4004
in conjunction with a tape-controlled plotter ‘Zuse-Graphomat’. He is still active as an
artist; nevertheless, his artistic style has not changed a lot since the 1960s. The artworks
of Georg Nees are held by the Victoria and Albert Museum, the United Kingdom.

In 1965, the computer art by Michael Noll, Frieder Nake and Georg Nees was
exhibited at the Howard Wise Gallery in New York, United States, along with random-
dot patterns by Bela Julesz.

Béla Julesz (1928–2003) was a visual neuroscientist and experimental psychologist.
He was the first creator of random dot stereograms in 1959. Julesz worked at Bell
Laboratories on recognizing camouflaged objects from aerial pictures taken by spy
planes. At that time, many vision scientists still thought that depth perception occurred
in the eye itself, whereas now it is known to be a complex neurological process. Béla
Julesz used a computer to create a stereo pair of random-dot images which, when viewed
under a stereoscope, caused the brain to see 3D shapes. This proved that depth perception
is a neurological process. Later, Christopher Tyler, a former student of Julesz, used the
principles of random-dot stereograms to invent autostereograms, which create the same
effect using a single image instead of two. [4]

Kenneth C. Knowlton (1931) is to be considered a pioneer of the so-called ASCII
(American Standard Code for Information Interchange) art. He received his Ph.D. at
M.I.T. in 1962 (thesis: Sentence Parsing with a Self-Organizing Heuristic Program). In
1963, working at Bell Laboratories, Knowlton developed the BEFLIX (Bell Flicks) –
the first specialized computer animation programming language for bitmap computer-
produced movies, created using an IBM 7094 computer and a Stromberg-Carlson 4020
microfilm recorder. He used it to make experimental film series in cooperation with
artists including eight computer-generated animations “Poem Field” together with Stan
VanDerBeek (1927–1984).

Knowlton also created new programming languages for graphics – EXPLOR,
ATOMS and SPHERES. In 1966, together with Leon Harmon (1922–1982) he developed
electronic scanning technologies explored in the “Studies in Perception” series. In
“Studies in Perception I”, they created an image of a reclining nude (the dancer Deborah
Hay) by scanning a photograph with a camera and converting the analogue voltages
to binary numbers which were assigned to typographic symbols based on halftone
densities. It was printed in The New York Times (1967) and exhibited at one of the

117Solvita Zariņa. Computer Scientists as Early Digital Artists

earliest computer art exhibitions – “The Machine as Seen at the End of the Mechanical
Age” – held at the Museum of Modern Art, New York (1968). [5] It became popular as
an example of ASCII art, although Knowlton called this technique a ‘photomosaic’. He
is still active as an artist and employee. His current artworks are sometimes mosaics
made of seashells.

Table 1

Computer Art Pioneers (using data from [6])
Name, Surname Country Enter Category Comments

Ben Laposky United States 1950 Mathematician /
artist

Oscilogramms

Herbert Franke Germany 1956 Mathematician /
artist

Oscilogramms,
algorithmic art

John Whitney
(Senior)

United States 1958 Filmmaker Made films as an artist
in residence with IBM

Charles Csuri United States 1960 Artist – algorist,
computer
animated
filmmaker

Csuri‘s film
„Hummingbird”
purchased by the
Museum of Modern Art
(1968)

Michael Noll United States 1963 Computer
scientist / artist

Algorithmic art,
Riley and Mondrian
simulations

Frieder Nake Germany 1963 Mathematician Algorithmic art
Kenneth Knowlton United States 1963 Computer

scientist
Cooperation with
1963 (+ Lillian
Schwartz), 1964 (+ Stan
Vanderbeek), 1966
(+ Leon Harmon),
Lillian Schwartz

George Nees Germany 1969 Mathematician –
computer
sculpture

Algorithmic art

Manfred Mohr Germany 1969 Artist – algorist World’s first museum
based solo exhibition of
computer-generated art
at Musee d‘Art Modern,
Paris (France)

Harold Cohen United
Kingdom,
moved to the
United States

1972 Artist (abstract
painter)

Creator of AI program
robot AARON

Yoichiro
Kawaguchi

Japan 1975 Artist / animator Japan Pavilion EXPO
‚1986, EXPO ‚2010

Roman Verotsko United States 1982 Artist - algorist Algorithmic plotter /
brush- algorist

David Em United States 1983 Artist First significant use of
3D

118 Computer Science and Information Technologies

3 Computer Art Founding Fathers’ Vision about the Computer
 Art Theory

The theoretical papers by computer art pioneers such as Frieder Nake, Ben Laposky,
Michael Noll show their broad spectrum of interests – starting from mathematics,
computer science, physics, engineer sciences and including art, art theory, esthetics,
semiotics, psychology. They came into the field of art theory and aesthetics with fresh,
innovative and sometimes naive ideas providing a basis for new discussions, conclusions
and making the first attempts to define the aesthetics of the new digital age.

The immediate theoretical approach to their newly-created artworks seems to be
extraordinary and different from the professional artists, as well as from art historians.
Despite the growing role of curators and art marketing in the 20th century, artists were
occasionally not keen on self positioning in the context of concrete art movement
and style right after the work had been created. We can find some exceptions (Dada,
Futurism came to the art stage with written manifests) but they never tried to publish
papers within an academic environment.

In 1975, Ben F. Laposky wrote: “My interest in other kinds of art was to some
extent in abstract geometric painting, cubism, synchronism and futurism. The oscillons
are related to the newer developments of op art, Lumia (light) art, computer art, abstract
motion pictures into an academic environment, video synthesizer (TV) art, and laser
displays, such as Laserium... The oscillons are intended to be a form of creative fine
art.” [7]

Herbert Franke suggests on two aspects regarding to computer graphics – computer
art. He states that: “Art can be regarded as a special form of communication. It is the
task of the artist to provide a message, which in this particular case is also subject to
certain aesthetic considerations, however they may be defined. Formerly, colours, sounds
and tones were regarded as the raw material of art; today they would be considered
information carriers. The elements of art are data, i.e. immaterial components. Even
though this statement may sound rather sober, it does imply that art is not a material
but rather an intellectual process.” [8] He also draws attention to the fact that having an
inventory of all the mathematical branches and an interest in visualization of all forms
that come to light, one can obtain plenty of forms, shapes and structures never seen
before – an expansion of our treasury of forms. Many of these forms have considerable
aesthetic charm. According to the usual criteria we cannot call them original works of
art. But they can be considered as elements available for new creations and can be used
to develop artworks. [9]

Michael Noll has changed his mind several times regarding the significance of
computer graphics and computer art at the stage of the 20th century art history. He has
moved from the adoration of a newly-created art form to critics and pessimistic view
on its sense and again to positive opinion on the future of this medium. During years
1962–1994, he had had more than ten scientific publications on computer art, digital
aesthetics and even an essay on the human perception of computer-generated graphics.

“Composition With Lines” consists of a scattering of vertical and horizontal bars
which, at first glance, seem to be randomly scattered throughout the painting. With
further study, however, one realizes that Mondrian used considerable planning in placing
each bar in proper relationship to all the others. Conceivably, Mondrian followed some

119Solvita Zariņa. Computer Scientists as Early Digital Artists

scheme or program in producing the painting although the exact algorithm is unknown.
A digital computer and microfilm plotter were used to produce a semi-random picture
“Computer Composition With Lines” similar in composition to Piet Mondrian’s painting
“Composition With Lines” (1917). Reproductions of both pictures were then presented
to 100 subjects whose task was to identify the computer picture and to indicate which
picture they preferred. Only 28% of the subjects were able to correctly identify the
computer-generated picture, while 59% of the subjects preferred the computer-generated
picture. Both percentages were statistically different (0.05 level) from selections based
upon chance according to a binomial test.” [10]

Fig. 2 P. Mondrian “Composition With Lines”, 1917; A. Michael Noll “Computer Composition
With Lines”, 1965 (© Rijkmuseum, © A. Michael Noll)

Frieder Nake insists on: “Since Shannon and Weaver, it was believed that any message
(a sequence or field of perceivable signals) contained information. The information
content of a message could be measured. A painting could clearly be considered the
carrier of signs. It could, indeed, be viewed as a complex sign composed of subsigns
which were in turn composed of subsigns and so on. On each level of such a hierarchy
the statistical information content (according to Shannon’s axiomatic definition) could
be determined.” [11]

It has to be mentioned that there still exists a gap between contemporary art
theory and history, and the computer art theory. Nowadays, when practically everyone,
including the artists and art historians, is an everyday user of computers and the term
“new media art” is frequently used instead of “computer art”, this art form of the 20th

century should be introduced to a wider audience.

4 First Examples of Computer Art in Latvia
The emergence of the computer art was tightly connected with the computer industry

development. Latvia, a small state of the Baltic region, was incorporated into the Soviet
Union after the Second World War. In former Soviet Latvia, the first generation computer

120 Computer Science and Information Technologies

was constructed by a team lead by Jānis Daube in 1962. Some graphical features became
available at the end of the 1960s. In 1969, a second generation computer GE-415 was
bought from France to set it at the premises of the Computing Centre in Riga. The
Museum of Computer Technique, IMCS UL in Latvia possesses the examples of the first
computer drawings from that time.

Fig. 3 “ASCII Art Samples”, ca. 1970 (©Museum of Computer Technique, IMCS UL)

Due to the political situation of that time, no connections with the Western
modern art were officially allowed. The art forms, such as Dadaism, abstract art (and
its variations), etc., were practically unknown to a wider audience. The first authors
of computer drawings were computer scientists, engineers. They had hardly any
information about the contemporary art forms of the 20th century. The most common
were ASCII art forms. These drawings always tended to be realistic. Sometimes they
even had features characteristic to caricatures or cartoons. Even some ‘underground’
things like drawings of nudes (no wonder, considering the political status of Latvia
at that time) had appeared since 1969. These first examples are not signed at all due
to their completely different status in perception of the society, as well as the authors’
own position. The computer scientists and engineers were not tended to position their
experiments with data visualization as any form of visual art.

Later (during the 1970s), we can find some examples of kinetic art, conceptual
and environmental art made by professional artists. Officially, these pieces were stated
in the category of design objects. Most of them were never realized. They appeared
only a few times in the expositions dedicated to design. Some kinetic objects were
built, as well as communication design samples appeared. In 1980, the Riga Central
Railway Station’s renovation project was implemented. A multi-program light system
at the clock tower and visual communication system inside the station building were
developed. In nowadays terms, we can call it a synthesis of communication design and
conceptual art.

5 Cooperation of Artists and Scientists
According to Andrea Grover [12], the first publicized cooperation of contemporary

artists and scientists working on new technologies started in early 1960s. The NASA Art
Program was established in 1962 by the United States to commission artists, including
Norman Rockwell and Robert Rauschenberg, for the purpose of recording history of

121Solvita Zariņa. Computer Scientists as Early Digital Artists

space exploration through the eyes of artists. The collection now includes 2,500 works
by more than 350 artists.

In 1964, Bell Laboratories started an informal artist-in-residence program that later
evolved into the greatest art and technology programs in the country. It started with
the beginnings of computer graphics, such as the above-mentioned Ken Knowlton’s
and Leon Harmon’s computer-generated “Studies in Perception” series and BEFLIX
animation system, which was used to produce dozens of animated films together with
artists like Stan VanDerBeek and Lillian Schwartz.

In 1966, a group of New York artists worked with around 30 engineers and scientists
from the Bell Telephone Laboratories to create performances that incorporated new
technology. On October 13–23, 1966, they organized a major artistic event “9 Evenings:
Theatre and Engineering”. It has always been mentioned as landmark in the 20th century
art history, as well as a starting point of using such technologies as video projection,
wireless sound transmission, and Doppler sonar. In 1967, engineers Billy Klüver and
Fred Waldhauer, and artists Robert Rauschenberg and Robert Whitman launched a non-
profit organization Experiments in Art and Technology (E.A.T.) with a main goal to
develop collaboration between artists and engineers. Composer and sound artist John
Cage, dancer Merce Cunningham, and pop artist Andy Warhol have to be mentioned
among the E.A.T. most active members. The best-known E.A.T. activity is the Pepsi
Pavilion at Expo ‘70 (1970, Osaka, Japan) where E.A.T. artists and engineers cooperated
to design and implement an immersive dome that included a fog sculpture by Fujiko
Nakaya. Twenty-eight regional E.A.T. divisions were established throughout the U.S.
in the late 1960s to promote cooperation between artists and engineers. They resulted in
expanding the role of artists in social developments related to new technologies. E.A.T.
activities lasted till 1989.

The Art and Technology artist-in-residence program (A&T) was launched during
1967–1971 by Maurice Tuchman, curator of modern art at the Los Angeles County
Museum of Art (LACMA) in Los Angeles. Tuchman selected industry partners from
southern California companies from one side, and American, as well as European
artists, who were keen to use the provided new technologies, from the other. More than
70 artists had participated, among them such 20th century and contemporary art icons
as Andy Warhol (1928–1987), Robert Rauschenberg (1925–2008), Roy Lichtenstein
(1923–1997) and John Baldessari (1931).

This program was followed by many other programs for artists in residence. John
Whitney, computer animation pioneer, became IBM’s first artist in residence (1967).
Since 1985 to this day, Australian Network for Art and Technology (ANAT) supports
Australian and foreign artists and creative practitioners engaged within science and
technology, including residencies. Similar activities took place in Britain. John Latham
and Barbara Steveni established Artist Placement Group (APG) in 1966. They tried to
engage artists in non-art environments.

Computer Technique Group (CTG) emerged in Japan from 1966 till 1969. Their
statement was that a computer is “a medium, neither a tool nor device, and computers
could become a medium for art and had a potential to become a medium that unites
media through its art works and global activities.”

Computer Arts Society (C.A.S.) was born almost at the same time in London. It
started by an inaugural exhibition “Event One” in March, 1969. George Mallen, Alan

122 Computer Science and Information Technologies

Sutcliffe and John Lansdown set up C.A.S. as a branch of the British Computer Society
to facilitate the use of computers by artists. Its bulletin PAGE almost to this day has
featured British and international computer artists, and hosted some fundamental
discussions such as about the aims, nature and aesthetics of computer art.

Another periodical – LEONARDO – should be mentioned as a longstanding and still
flourishing science and art project. This journal has achieved international recognition
and high scientific level. Its history is a very personal story at the same time. Frank
Malina (1912–1981) was a pre-Space Age rocket engineer and second director of the Jet
Propulsion Laboratory (1944–1946). However, he became involved in kinetic art. While
being an engineer, he had access to an abundance of scholarly Periodicals. There was
no equivalent publication place for artists, so he decided to start one. The concept was
simple – a publication by serious artists with subject integrity secured by the same kind
of peer review of articles that is common in scientific journals. The journal Leonardo
was founded in 1968 in Paris. Leonardo was and still is an international peer-reviewed
research journal that features articles written by artists on their own work, and focuses on
the interactions between the contemporary arts and the sciences and new technologies.

After the death of Frank Malina in 1981, and under the leadership of his son, Roger
F. Malina (astrophysicist, Executive Director of the Centre for EUV Astrophysics at UC
Berkeley at that time), Leonardo moved to San Francisco, California, as the flagship
journal of the newly-founded non-profit organization Leonardo/The International Society
for the Arts, Sciences and Technology (Leonardo/ISAST). Leonardo/ISAST has grown
along with its community and today it is the leading organization for artists, scientists
and others interested in the application of contemporary science and technology to the
arts and music. [13] Leonardo is covered by Arts & Humanities Citation Index and
Current Contents/Arts & Humanities of Thomson Reuters.

In Latvia, the first net art, then new media art, examples spread out in the mid
of 1990s. Professional artists were initiators of collaboration between scientists and
the IT industry. Annual new media festival in Riga – “Art and Communication” – first
organized by RIXC (Centre for New Media Culture in Riga) in 1996 has acquired
international recognition amidst worlds digital community. Artists prompted to cover
such issues as Transbiotics (2010), Energy (2009), Spectropia (2008), Spectral Ecology
(2007), Waves (2006), Media Architecture (2003). In 2007, new media artist Gints
Gabrāns (1970) created project “Paramirrors” and presented it in the Latvian pavilion
on the 52nd International Art Exhibition of La Biennale di Venezia, Venice, Italy. It was
done in collaboration with Elmārs Blūms, Institute of Physics, University of Latvia, Ilze
Aulika, Vismants Zauls, Mārtiņš Rutkis, Institute of Solid State Physics, University of
Latvia, and Jānis Spīgulis, Institute of Atomic Physics and Spectroscopy, University of
Latvia.

References
1.	O nline: http://www.atariarchives.org/artist/sec6.php (accessed December 2010)
2.	O nline: http://www.biologie.uni-muenchen.de/~franke/ (accessed December 2010)
3.	O nline: http://noll.uscannenberg.org/ (accessed December 2010)
4.	 Julesz, B. Foundations of Cyclopean Perception. Chicago: The University of Chicago Press, 1971.
5.	O nline: http://www.kenknowlton.com/ (accessed December 2010)

123Solvita Zariņa. Computer Scientists as Early Digital Artists

	 6.	 King, M. Computers and Modern Art: Digital Art Museum. “Proceedings of the 4th Creativity and
Cognition Conference”, Loughborough University, New York: ACM Press, pp. 88–94, 2002.

	 7.	 Laposky, B. Oscillons: Electronic Abstractions. Available online: http://www.atariarchives.org/artist/
sec6.php (accessed December 2010)

	 8.	 Franke, H.W. The Expanding Medium: The Future of Computer Art. “Leonardo”, vol.20, No.4,
pp. 335–338, 1987.

	 9.	 Franke, H.W. and Helbig, H.S. Generative Mathematics: Mathematically Described and Calculated
Visual Art, “Leonardo”, 25, Nos. 3/4, pp. 291–294, 1992.

	10.	 Noll, A.M. Human or Machine: A Subjective Comparison of Piet Mondrian’s ‘Composition with Lines’
and a Computer-Generated Picture, “The Psychological Record”, Vol. 16. No. 1, pp. 1–10, January
1966.

	11.	 Nake, F. Computer Art. A Personal Recollection. “Proceedings of the 5th Conference on Creativity
&Amp; Cognition”, ACM, New York, NY, USA, pp 54–62, 2005

	12.	 Andrea Grover. Artists in labs, tech industries, or science agencies
		 http://andreagrover.com/category/science/ (accessed December 2010)
	13.	O nline: http://www.leonardo.info/ (accessed December 2010)

LATVIJAS UNIVERSITĀTES RAKSTI
770. sējums. DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

Latvijas Universitātes Akadēmiskais apgāds
Baznīcas ielā 5, Rīgā, LV-1010

Tālrunis 67034535

Iespiests SIA «Latgales druka»

